ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

29/4/1

Одобрено кафедрой «Железнодорожный путь, машины и оборудование»

Утверждено деканом факультета «Транспортные сооружения и здания»

СТРОИТЕЛЬНЫЕ И ДОРОЖНЫЕ МАШИНЫ

Рабочая программа и задание на курсовой проект с методическими указаниями для студентов IV курса

специальности

190205.65 ПОДЪЕМНО-ТРАНСПОРТНЫЕ, СТРОИТЕЛЬНЫЕ, ДОРОЖНЫЕ МАШИНЫ И ОБОРУДОВАНИЕ

специализации

КОМПЛЕКСНАЯ МЕХАНИЗАЦИЯ ПУТЕВЫХ, СТРОИТЕЛЬНЫХ ПОГРУЗОЧНО-РАЗГРУЗОЧНЫХ И ТРАНСПОРТНО-СКЛАДСКИХ РАБОТ

2-е издание

Данная рабочая учебная программа дисциплины является типовой и составлена в соответствии с Государственным образовательным стандартом высшего профессионального образования на основании примерной учебной программы данной дисциплины и удовлетворяет государственным требованиям к минимуму содержания и уровню подготовки инженера по специальности 190205.65 Подъемно-транспортные, строительные, дорожные машины и оборудование.

В соответствии с Постановлением Правительства РФ от 14 февраля 2008 г. №71 «Об утверждении Типового положения об образовательном учреждении высшего профессионального образования (высшем учебном заведении)» рабочая учебная программа обновляется ежеголно.

Обновленная версия рабочей учебной программы размещена на сайте POAT (http://www.rgotups.ru).

Автор – канд. техн. наук, доц. Е.П. Щеблыкин

1. ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Комплексная механизация и автоматизация производственных процессов как основа материального и экономического развития

Исторический обзор развития строительных машин. Направления технического развития.

Цель курса: изучить конструкции строительных машин и методики расчета основных параметров.

Задачи – обоснованно выбирать вид машины для конкретных строительных работ.

2. СОДЕРЖАНИЕ ДИСЦИПЛИН

1.2. Введение

Раздел I Назначение и классификация машин

2.1.1. Классификация строительных машин и предъявляемые к ним требования

Операции строительного процесса. Классификация машин по назначению, универсальности, подвижности, характеру рабочего режима, приводу. Типажные ряды и ГОСТы на строительные машины. Общие требования, предъявляемые к строительным машинам (конструктивные, технологические, надежности, специальные). Требования к машинам, работающим в особых климатических условиях. Показатели эффективности и качества строительных машин. Основные направления развития строительного и дорожного машиностроения

2.1.2. Основы методики проектирования строительных машин

Современное воззрение на процесс проектирования технических устройств. Этапы проектирования, основные задачи и спо-

собы их решения. Прогнозирование развития строительных машин. Конструирование строительных машин с учетом эргономических и экономических факторов Выбор параметров по критериям качества на основе методов решения экстремальных задач. Прогнозирование надежности строительных машин на стадии их проектирования

2.1.3. Основные узлы строительных машин

- 1. Силовое оборудование строительных машин. Особенности работы силового оборудование строительных машин. Сравнительный анализ силового оборудования. Методика выбора типа и параметров силового оборудования.
- 2. Ходовое оборудование строительных машин. Разновидности ходового оборудования. Область их применения. Тяговый расчет и выбор параметров ходового оборудования. Базовые тягачи строительных и дорожных машин.
- 3. Трансмиссии строительных машин. Типы трансмиссий и их характеристики. Методы выбора типа и параметров трансмиссии.
- 4. Системы управления строительных машин. Назначение, классификация и основные параметры. Методика выбора типа и расчета параметров систем управления.
- 5. Рабочее оборудование строительных машин. Специфика выбора его основных параметров в зависимости от выполняемых механизированных строительных процессов

Раздел II Машины для производства земляных работ

2.2.1. Общие сведения о грунтах, видах земляных работ и машинах для их выполнения

Физико-механические свойства и классификация грунтов. Процессы резания и копания грунтов. Мерзлые грунты и особенности их разработки. Определение усилий резания и копания грунтов рабочими органами. Выбор рациональной геометрии ре-

жущих устройств и параметров срезаемой стружки. Применение физического моделирования при исследовании рабочих органов землеройных машин.

Виды земляных работ. Требования, предъявляемые к землеройным машинам

2.2.2. Машины для подготовительных работ

Состав подготовительных работ. Конструктивные особенности кусторезов, корчевателей, рыхлителей. Главные и основные параметры. Охрана труда и техника безопасности при производстве подготовительных работ

2.2.3. Одноковшовые экскаваторы

Область применения, классификация и типы одноковшовых строительных экскаваторов. Виды сменного рабочего оборудования экскаваторов с механической трансмиссией и гидроприводом. Главные и основные параметры. Конструктивные особенности и работа основных механизмов экскаваторов с одномоторным и многомоторным приводом. Кинематические схемы.

Конструктивная схема устройства и работа одноковшового экскаватора с оборудованием «прямая лопата». Типы напорных механизмов, конструктивные особенности и сравнительный анализ их работы. Расчет механизмов подъема и напора. Определение мощности приводного двигателя.

Конструктивные особенности и работа одноковшовых экскаваторов с оборудованием «обратная лопата», «драглайн». Расчет главных механизмов: подъема и тяги.

Определение производительности и условий устойчивости одноковшовых экскаваторов. Перслективы развития. Охрана труда, техника безопасности при производстве работ одноковшовыми экскаваторами

2.2.4. Многоковшовые экскаваторы

Область применения, классификация и особенности работы многоковшового экскаватора. Конструктивные схемы траншейных и цепных роторных экскаваторов. Главные и основные пара-

метры. Определение усилий на рабочем органе, потребной мощности и силы тяги.

Конструктивные особенности, типы и процесс работы роторных и стреловых экскаваторов. Главные и основные параметры. Расчет мощности привода ротора. Пути развития и совершенствования многоковшовых экскаваторов. Охрана труда и техника безопасности при производстве работ

2.2.5. Скреперы

Область применения, классификация и конструктивные схемы. Главные и основные параметры. Тяговый расчет и производительность. Расчет механизмов подъема ковша и разгрузки. Расчет устойчивости. Пути развития и совершенствования скреперов. Охрана труда и техника безопасности при производстве работ скреперами

2.2.6. Бульдозеры

Область применения, типы и конструктивные схемы бульдозеров. Главные и основные параметры. Тяговый расчет и производительность. Расчет параметров отвала и сил, действующих на бульдозер. Пути развития и совершенствования бульдозеров. Охрана труда и техника безопасности при производстве работ

2.2.7. Грейдер-элеваторы

Область применения, классификация и конструктивные схемы. Главные и основные параметры. Тяговый расчет и производительность.

Силы, действующие на грейдер-элеватор, и его устойчивость. Пути развития и совершенствования грейдер-элеваторов. Охрана труда и техника безопасности при производстве работ

2.2.8. Автогрейдеры

Область применения, классификация и конструктивные схемы. Главные и основные параметры. Тяговый расчет и производительность. Расчет основных механизмов: подъема и переворота отвала, наклона. Техника безопасности при производстве работ

2.2.9. Буровые машины

Назначение, классификация и конструктивные схемы буровых машин. Рабочие органы машины для разработки скважин большого диаметра. Пути развития буровой техники. Охрана труда и техника безопасности при производстве работ

2.2.10. Машины для уплотнения грунта

Назначение, классификация и конструктивные схемы уплотнительных машин статического, динамического и вибрационного действия. Главные и основные параметры. Определение производительности. Охрана труда и техника безопасности при производстве работ

2.2.11. Машины и оборудование для гидромеханизации земляных работ

Область применения, классификация и конструктивные схемы гидромониров и земснарядов. Определение производительности и мощности привода земснарядов. Охрана труда и техника безопасности при производстве гидромеханизированных работ

2.2.12. Машины для разработки мерзлых грунтов

Классификация и конструктивные схемы машин для разработки мерзлых грунтов. Перспективы развития методов и средств разработки мерзлых грунтов

Раздел III Производство сваебойных работ

2.3.1. Машины и оборудование для сваебойных работ

Общие сведения о сваебойных работах. Классификация сваебойного оборудования. Конструктивные схемы и работа копровых агрегатов.

Физико-механические основы динамического погружения свай.

Конструктивные схемы вибропогружателей и вибромолотов: особенности их работы и область применения. Расчет вибропогружателей и вибромолотов: определение возмущающей силы, необходимой частоты колебаний и мощности приводного двигателя.

Дизельные молоты. Конструктивные особенности трубчатых и штанговых молотов. Определение основных параметров молотов. Пути развития и совершенствования машин и оборудования для свайных работ. Охрана труда и техника безопасности при производств работ.

Раздел IV Дробильно-сортировочные машины и установки

2.4.1. Дробильные машины

Назначение и классификация дробильных машин. Физикомеханические основы процесса дробления. Основы теории (гипотезы) дробления.

Конструктивные схемы и работа щековых, конусных, валковых и роторных дробильных машин и шаровых мельниц. Основы расчета дробилок: определение угла захвата, рационального числа оборотов эксцентрикового вала, максимального дробящего усилия. Мощности приводного двигателя и производительности дробильных машин. Пути развития и совершенствования дробильных машин. Охрана труда безопасности при производстве работ

2.4.2. Машины для сортировки строительных материалов

Назначение, классификация и конструктивные схемы грохотов. Конструкция сит и решет. Основы расчета грохотов. Пути развития и совершенствования машин для сортировки строительных материалов. Охрана труда и техника безопасности при производстве работ.

Раздел V

Машины и установки для приготовления и транспортирования бетонов и растворов

2.5.1. Машины для приготовления бетонов и растворов

Общие сведения о бетонах и растворах. Классификация и конструктивные схемы бетоносмесителей. Главные и основные параметры. Определение мощности приводного двигателя и про-изводительности.

Классификация и конструктивные схемы растворосмесителей. Определение технической производительности и мощности приводного двигателя.

Пути развития и совершенствования машин для приготовления бетонов и растворов. Охрана труда и техника безопасности при производстве работ

2.5.2. Дозаторы для составляющих бетонов и растворов

Объемные и весовые дозаторы циклического действия. Автоматические дозаторы непрерывного действия. Пути развития и совершенствования дозаторов

2.5.3. Машины для транспортирования и набрызга бетонов и растворов

Виды транспортных средств. Конструктивные схемы бетононасосов и растворонасосов. Автобетоносмесители и автобетоновозы. Производительность и мощность привода бетононасосов и растворонасосов. Цемент-пушка, ее конструкция и процесс работы. Виброэжекционные торкрет-машины и комплекс оборудования для приготовления и нанесения аэрованных пенорастворов, конструктивные особенности и основные параметры. Охрана труда и техника безопасности при транспортировании и набрызге бетонов и растворов

Раздел VI

Машины и оборудование для изготовления сборных бетонных и железобетонных конструкций

2.6.1. Железобетон как строительный материал Область применения железобетонных конструкций. Основные технологические операции их изготовления

2.6.2. Оборудование для арматурных работ

Станки для гнутья и резки арматуры. Машины для сварки. принципиальные схемы и основы расчета. Пути развития и совершенствования машин и оборудования для арматурных работ. Охрана труда и техника безопасности

2.6.3. Оборудование для укладки бетона и формирования изделий

Машины для раздачи и укладки бетона. Конструктивные схемы и основы расчета. Машины для уплотнения бетона. Оборудование для торкретирования, вакуумирования и центрифугирования бетона. Общие сведения о станках и оборудовании, применяемом для изготовления железобетонных шпал. Пути развития и совершенствования оборудования для укладки бетона и формирования изделий. Охрана труда и техника безопасности при производстве работ

3. ВИДЫ РАБОТЫ С РАСПРЕДЕЛЕНИЕМ ВРЕМЕНИ

Курс - 4

Семестры - VII

Всего часов - 24 ч.

Лекций - 16 ч.

Лабораторных занятий – 8 ч.

Самостоятельных работ - 52 ч.

Зачеты - 4 курс.

Экзамены - 4 курс.

4. ПЕРЕЧЕНЬ ТЕМ ЛЕКЦИОННЫХ ЗАНЯТИЙ

№ 11/11	Наименование темы	Количество часов
1	Раздел I	2
2	Раздел II	14

5. ПЕРЕЧЕНЬ ТЕМ, КОТОРЫЕ СТУДЕНТЫ ДОЛЖНЫ ПРОРАБОТАТЬ САМОСТОЯТЕЛЬНО

- 1. Разделы III-VI.
- 2. Расчет производительности машин.
- 3. Определение сил сопротивления.
- 4. Определение мощности на производство работы.

6. ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Примерный объем в часах

NoII/II	Название темы	Количество
		часов
1	Определение производительности цикличных и ма-	
	шин непрерывного действия	1,5
2	Расчет мощности привода машин	4,5
3	Определение сил сопротивления на рабочем органе и	
	перемещение машин	4

7. ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

Содержание и примерный объем в часах

Noii/ii	Название и краткое содержание работы	Количество
1	Исследование процессов резания грунта на базе грунтового канала	часов 2
2.	Исследование процесса копания грунта рабочими органами землеройных машин на базе грунтового канала	2
3	Определение плотности горных пород (грунтов) с помощью плотномеров	2
4	Определение производительности и потребной мощности бетоносмесителей	2

4. ПЕРЕЧЕНЬ ТЕМ ЛЕКЦИОННЫХ ЗАНЯТИЙ

№ 11/11	Наименование темы	Количество часов
1	Раздел I	2
2	Раздел II	14

5. ПЕРЕЧЕНЬ ТЕМ, КОТОРЫЕ СТУДЕНТЫ ДОЛЖНЫ ПРОРАБОТАТЬ САМОСТОЯТЕЛЬНО

- 1. Разделы III-VI.
- 2. Расчет производительности машин.
- 3. Определение сил сопротивления.
- 4. Определение мощности на производство работы.

6. ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Примерный объем в часах

NoII/II	Название темы	Количество
		часов
1	Определение производительности цикличных и ма-	
	шин непрерывного действия	1,5
2	Расчет мощности привода машин	4,5
3	Определение сил сопротивления на рабочем органе и	
	перемещение машин	4

7. ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

Содержание и примерный объем в часах

Noii/ii	Название и краткое содержание работы	Количество
1	Исследование процессов резания грунта на базе грунтового канала	часов 2
2.	Исследование процесса копания грунта рабочими органами землеройных машин на базе грунтового канала	2
3	Определение плотности горных пород (грунтов) с помощью плотномеров	2
4	Определение производительности и потребной мощности бетоносмесителей	2

8. ПЕРЕЧЕНЬ КУРСОВЫХ ПРОЕКТОВ

Темы курсовых проектов:

- 1. Бульдозеры.
- 2. Скреперы.
- 3. Экскаваторы одноковшовые.
- 4. Экскаваторы многоковшовые.

Объем графической части рабты 3 листа формата A1. Время необходимое для выполнения курсового проекта — 50 часов.

9. ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

9.1. Литература

Основная

- 1. Шестопалов К.К. Подъёмно-транспортные, строительные и дорожные машины и оборудование.: Учеб. — М.: Изд. центр «Академия», 2009. — 319 с.
- 2. Добронравов С.С., Дронов В.Г. Строительные машины и основы автоматизации.: Учеб. М.: Высшая школа, 2007. 575 с.

Дополнительная

- 3. Гаркович Н.Г., Аринченков В.И., Карпов В.В. Машины для земляных работ.: Учеб. —М.: Высшая школа, 1982. 335 с.
- 4. Сергеев В. П. Строительные машины и оборудование.: Уч. пос. для вузов. М.: Высшая школа, 1987. 337 с,
- 5. Домбровский H, Γ ., Γ альперия M. H. Строительные машины.: Учеб. для студ. вузов. Ч. 2. -M.: Высшая школа, 1985. -224 с.

9.2. Перечень компьютерных программ -

программа по расчетам скреперов, бульдозеров и экскаваторов

9.3. Перечень других материалов и пособий – плакаты

ЗАДАНИЕ НА КУРСОВОЙ ПРОЕКТ

Задачей курсового проекта является разработка эскизного проекта одного из видов строительных машин: бульдозера, скрепера, одноковшового или многоковшого экскаватора.

1. ОБЩИЕ УКАЗАНИЯ

Проектирование производится на основании заданий, приведенных в таблицах 0 (6) - 5 (3), где указаны исходные данные и объем графической части. Номер таблицы соответствует предпоследней цифре шифра, а номер варианта - последней.

Курсовой проект состоит из двух частей: расчетно-пояснительной записки и графической части.

Расчетно-пояснительная записка включает:

- 1. Задачи проектирования и обзор современных достижений науки и техники в рассматриваемой области производства как в России, так и за рубежом. Краткое описание применяемых машин заданного назначения, иллюстрируемое эскизами и их техническими характеристиками.
- 2. Выбор варианта схемы машины и составление ее технической характеристики. При этом учитываются условия производства работ, простота и надежность конструкции (наличие стандартных узлов и деталей), удобство обслуживания, управления, транспортирования, монтажа и демонтажа; масса машины, производительность, коэффициент использования ее по времени, общая компоновка машины в целом и эстетичность конструкции. После сопоставления вариантов по основным показателям студент выбирает наиболее целесообразный из них.
- 3. Кинематические, силовые и прочностные расчеты. Исходя из особенностей рабочего процесса, необходимо рассчитать по-

требные мощности двигателей машины, составить ее кинематическую схему и произвести прочностный расчет.

Полученные данные об усилиях, действующих на элементы машины, используются при конструктивной разработке и расчете частей машины. Расчет производится по методикам и рекомендациям, изложенным в специальной литературе. В списке литературы в методических указаниях приводятся основные учебные и справочные пособия.

В пояснительной записке должны быть приведены прочностные расчеты по разрабатываемым узлам.

- 4. Проверку устойчивости мобильных машин (экскаваторов и землеройно-транспортных машин).
- 5. Технико-экономические показатели работы машины в эксплуатационных условиях, которые дают возможность судить о технической и экономической эффективности применения данной машины. В связи с этим требуется произвести необходимые подсчеты и привести в пояснительной записке следующие данные:

габариты машины в рабочем и транспортном положениях; характеристику рабочего органа или рабочего оборудования;

транспортную и рабочую скорости; тяговый расчет; установочную мощность двигателя; силу тяжести машины; теоретическую и техническую производительность; себестоимость машино-смены и себестоимость 1 м³ разрабатываемого грунта или 1 м³ перерабатываемого щебня.

- 6. Мероприятия по обеспечению охраны труда и техники безопасности.
- 7. Заключение, в котором студент должен указать область применения заданной машины, сравнить ее технико-экономические показатели с показателями аналогичных российских и зарубежных образцов машин данного типа.

2. УКАЗАНИЯ К ОФОРМЛЕНИЮ КУРСОВОГО ПРОЕКТА

Требования к оформлению расчетно-пояснительной записки по курсовому проекту аналогичны требованиям к расчетно-пояснительной записке к контрольной работе.

Каждый раздел записки должен заканчиваться краткими выводами. В заключительной части записки необходимо привести итоги выполнения проекта и общие выводы.

При проектировании широкое применение должны получить типовые (стандартные) узлы и детали, а также такие материалы, как пластические массы, легированные стали и легкие сплавы. Типовые (стандартные) узлы и детали следует нанести на общий вид машины без проверочных прочностных расчетов.

Графическая часть работы должна состоять из трех листов формата 24 (594 x 841 мм).

В заключительной части расчетно-пояснительной записки должны быть кратко сформулированы итоги проектирования — техническая и экономическая эффективность применения машин — и перечислены улучшенные или вновь предложенные в проекте конструкции.

Ориентировочно объем отдельных разделов записки должен составлять: задачи проектирования и обзор современных достижений науки и техники в рассматриваемой области — 4 - 5 с.; выбор варианта схемы машины и составление ее технической характеристики — 5 - 6 с.; кинематические, силовые и прочностные расчсты — 15 - 20 с.; технико-экономические показатели разработанной машины, расчет себестоимости машино-смены и машино-часа — 4 с.; меры по обеспечению охраны труда — 2 с.; заключение — 1 - 2 с.

Расчетно-пояснительную записку следует писать чернилами разборчиво на одной стороне листа размером 203 x 288 мм. В начале записки необходимо полностью привести содержание варианта задания на курсовой проект.

Все чертежи проекта следует выполнять карандашом, причем на листах нужно помещать основную надпись, а спецификацию с основной надписью — на отдельных листах формата II, подши-

тых в конце записки (см. ЕСКД. Основные положения. ГОСТ 2.101-68 и ГОСТ 2.109-68). На чертежах должны быть приведены все необходимые проекции, проставлены размеры, допуски и посадки, т. е. чертежи должны полностью удовлетворять требованиям ГОСТов в машиностроении.

3. ИСХОДНЫЕ ДАННЫЕ

Таблица 0 (6) Тип маши-Варианты ны и ее ı 2 3 4 6 9 () параметры Тип Неповоротный Поворотный бульдозера Базовый ДЭТ-250 T-330 T-130 T-411 T-180 T-170 T-411 T-180TII T-130M T-180 трактор или PATRT Привод Гидравлический рабочего органа Категория Ħ1 Ш 11 Ш II Ш 11 H II 111 грунта Части И узлы маинн, которые необхолимо pacсчитать вычертить: Общий вид машины Отвал + + Схема + + + + гидравлического привода Толкающая рама

Тип машины					Ba	рианты						
и	1	2	3	4	5	6	7	8	9	0		
ее параметры					L							
Скрепер с ковиюм, м ³	3,0	3,0	8,0	4,5	15,0	9,0	18,0	8,0	15,0	25,0		
Тип скрепера		Прицепной Полу- при- цен- ной										
Система управления		Гидравлическая										
Способ	Сво-	Сво- Принуди- Сво- Принуди- Полу-				Полу-	Припуд	ительнь	ıй			
разгрузки	бод-	тельн	ый	бод-	тельн	ый	прину-					
ковша	ный			ный			дитель- ный					
Части и узил маннин, кото- рые необхо- димо рассчи- тать и вычер- тить::												
Общий вид	+	+	+	+	+	+	+	+	+	+		
Ковш	+	+	+	+	+	+	+	+	+	+		
Задияя степка							+	+	+	+		
Схема гид- равлического привода	i	+	+	+	+	+						

Таблица 2 (8)

Тип машины и		Варианты											
ее параметры	l	2	3	4	5	6	7	8	9	0			
Экскаватор с ковшом, м ³	0,2	0,25	0,35	0,5	0,65	0,6	0,7	0,85	1,0	1,25			
Обратная лоната	+	+	-+	÷	+					ļ			
Прямая лопата						+	+	+	+	+			
Категория групта	111	IV	III	IV	Ш	lV	111	IV	Ш	IV			
Ходовое оборудо-													
вание:													
колесное	+	+	+	+									
гусеничное					+	+	+	+	+	+			
Система управле-													
ния:													
гидравлическая	+	+	-+-	+	+	+	+	+	+	+			

Тип машины и ее параметры	Варианты											
	1	2	3	4	5	6	7	8	9	Ú		
Части и узивы машин, которые необходимо рас- считать и вычер-								·				
тить												
Общий вид	+	+	+	+	+	+	+	+	+	+		
Рабочее оборудо- вание	+		+				+			+		
Kosu		+			+			4	+			
Руконть			+	+		į	+					
Стрела				1	+	+	Ì		-}-			
Ходовое оборудо- вание								+				
Схема гидро- управления	+	+		+		+				+		

Таблиуа 4 (9

Параметры			-		Вари	IAIITEI	The State of the S	***************************************		
	1	2	3	4	5	6	7	8	9	0
Тип машины		lava . I		Цепной						
Базовая ма-	MT3- 82	TT-4	T- 130	MT3-	TT-4	T- 130	TT-4	MT3 82	T-	TT-4
Скорост	02	-	130	02		130		82	130	
цвижения:										
рабочая,м/ч	20-650	5-150	0-340	20-650	5-150	0-340	5-150	20-650	0-340	5-150
транспорт	2-33	2,5-10	до 5	2-33	2,5-i0	до 5	2,5-10	2-33	до 5	2,5-10
ная, км/ч										
Техническая	70	220	80	70	220	80	220	70	80	220
производтель-										
Размеры										
траншен, м										
г лубина	до 1,6	2,5	3	до 1,5	2,5	2	2,5	до 1,6	2	2,5
ширина	0,3	0,8	0,6	0,3	0,8	0,6	0,8	0,3	0,6	0,8
Части и узлы										
машин, кото-							1			
рые необхо-										
дямо рассчи-										
тать и вычер-										
THIL.	<u> </u>		L	L		<u></u>				

Окончание табл. 4(9)

Параметры					Вариа	нты				
	1	2	3	4	5	6	7	8	9	0
Общий вид манины	+	+	+	+	+	+	+	+	+	+
Рабочий орган	+		-	+		+		÷	+	
Рама рабочего органа		+			+		+			+
Схема приво- да (кинемати- ческая или гидравличе-	+	+	+	+	+	4.	+	+	+	+
ская схемы)		<u></u>					<u></u>			L

Таблица 5 (3)

Параметры	Варианты											
	0	1	2	3	4	5	6	7	8	9		
ì	2	3	4	5	6	7	8	9	10	11		
Тип мащи- ны		Роторный траншейный экскаватор										
Базовая машина Скорость	17-4	T-130	ДЭТ- 250	7-130	TT-4	ДЭТ- 250	T-130	TI-4	T-130	T-130		
передвиже-						4						
рабочая, м/ч	10-480	10-300	20-350	10-300	10-430	20-350	10-300	10-480	10-300	10-300		
транспорт- ная, км/ч	2,35-1,0	1,8-6,2	1-6	1,8-6,2	2,3-10	1.6	1,8-6,2	2,3-10,0	1,8-6,2	1,8-6,2		
Ротор: смкость конпа, л Транспор-		140	250	160	Total Control of the	250	140		160	140		
тер: ширина ленты, мм скорость		800	1200	800	-	1200	800		800	800		
движения пситы, м/с Размеры		5	5	5		5	5	_	5	5		
траншей, м: глубина ширина (без откосов)	1,3	2 1,2	2,5	2,2	i,3 0,3	2,5	2 1,2	1,3	2,2	2 1,2		

Окончание табл. 5(3)

					-			UKUNA	ание та	1771. 213
1	2	3	4	5	6	7	8	9	10	11
Части и узлы маши- ны, которые необходи- морассчи- тать и										
вычертить: Общий вид машины	+	+	+	+	+	+	+	+	+	+
Рабочий орган	+		+		+			+		
Ротор Гидроци- линдр		+	+	+		+	+		+	+
подъема- опускания рабочего органа Кинемати- ческая (гидравли- ческая)	+	+		+	+	+	+	-}	+	+
схемя							L	L	L	

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КУРСОВОГО ПРОЕКТА

1. ОБЩИЕ РАСЧЕТЫ МАШИН

1.1. Определение геометрических параметров бульдозеров и скреперов

Геометрические параметры машин можно определить по зависимостям, приведенным в табл. 6, 7 и по рекомендациям

Таблица б

Параметры	Зависимость нараметра от монцю- сти двигателя для гусеничного бульдозера
Тяговое усилие, Н	T = (1150 1200)N
Длина будьдозера (полная), мм	$L = (900 \dots 1250)\sqrt[3]{N}$
Ширина бульдозера общая (отвала), мм	$S_6 = (650 \dots 850) \sqrt[3]{N}$
Высота бульдозера (максимальная), мм	$H_6 = (410 \dots 650) \sqrt[3]{N}$
Ширина гусеницы, мм	$S_r = (100 150) \sqrt[3]{N}$
Ширина колеи, мм	$S_{\kappa} = (350 \dots 550)^{\frac{3}{N}} \overline{N}$
Вес полный, т	$G = 2,6\sqrt[3]{N}$
Вес рабочего оборудования, т	$G_{pa6} = (0.013 \dots 0.015)N$

Схемы машин с полученными размерами представлены на рис. 1, 2, 3.

1.2. Определение геометрических параметров одноковшовых экскаваторов

Одноковшовые экскаваторы выполняются с механической трансмиссией и гидравлические с объемным приводом.

1.2.1. Экскаваторы с механической трансмиссией Масса машины определяется по формуле $m = K_{n}q_{n}$

где K_M — коэффициент пропорциональности, кг/м³; q — вместимость ковша, м³.

Для универсальных экскаваторов $K_M = (20 ... 36) \cdot 10^3$; для легких условий работы следует принимать меньшие значения, для тяжелых — большие.

Геометрические размеры машины L_i и рабочего оборудования определяются по зависимости:

$$L_i = K_L \sqrt[3]{m},$$

где K_L — коэффициент размеров машины.

Для габаритных размеров машины рекомендуются следующие \mathbf{K}_{L}

Высота кузова	0,095 0,125
Радиус задней стенки кузова	0,09 0,095
Радиус пяты стрелы	0,033 0,038
Высота пяты стрелы гусеничного	
экскаватора Нпг	0,043 0,048
База гусеничного хода	0,101 0,116
Длина гусеницы	0,118 0,138
Ширина хода	0,095 0,11
Ширина звена	0,02 0,017
Высота гусеницы	0,026 0,03
Высота звена	0,003 0,0045
Клиренс под платформой	0,029 0,032
Высота двуногой стойки	0,01 0,11

Высота пяты стрелы экскаватора на пневмоходу H_{nn} определяется после выбора пневматических шин $Д_{m}$,

$$H_{nn} = H_{nr}(A_m - H_r)$$
.

Размеры рабочего оборудования определяются по зависимостям, приведенным в табл. 8.

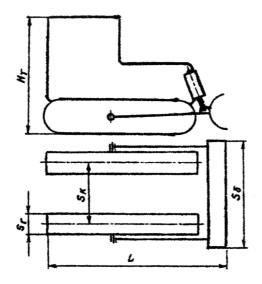


Рис.1. Схема бульдозера

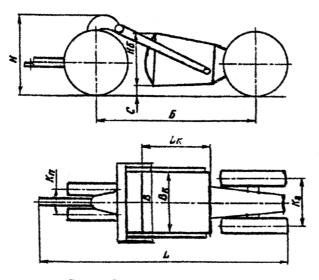
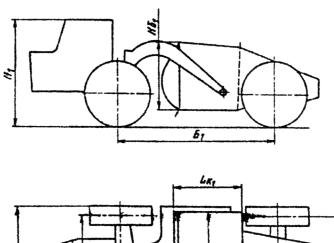



Рис. 2. Схема скрепера прицепного

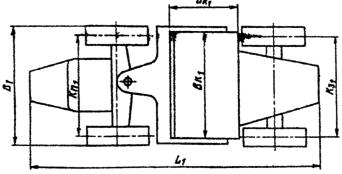


Рис. 3. Схема скрепера самоходного

		Таблица 7		
Параметры	Зависимость параметра от емкости ковша q, м3			
	для прицепных	дия самоходных		
	скреперов	скреперов		
1	2	3		
Емкость ковша с шанкой, м ³	$q_i = 1,3q$	$q_1 = 1,2q$		
Мощиость тягача, кВт	N = 10 + 18,5q	$N_1 = 17,7q$		
Тяговое усилие, Н	T = 10 0000q	$T_1 = 10000q$		
Вес скрепера, Н	$G = (10\ 00012\ 000)q$	$G_1 = (11\ 00015\ 000)q$		
Длина скрепера, мм	$L = 1200 + 4200 \sqrt[3]{q}$	$L_1 = (45005200)\sqrt[3]{q}$		
Ширина скрепера, мм	$B = (15001700)\sqrt[3]{q}$	$B_1 = (12001400)\sqrt[3]{q}$		
Высота скрепера, мм	$H = (0.81.2)1400\sqrt[3]{q}$	$II_1 = (12001400)\sqrt[3]{q}$		

Окончание табл. 7

Окончиние тисл						
1	2	3				
База скрепера, мм	$E = (28003300)\sqrt[3]{q}$	$E_1 = (28003300)\sqrt[3]{q}$				
Колея передних колес, мм	$K_{rr} = (0.81.2)860\sqrt[3]{q}$	$K_{\pi 1} = (0,81,2)860\sqrt[3]{q}$				
Колея задних колес, мм	$K_3 = (8601100)\sqrt[3]{q}$	$K_{si} = (8601100)\sqrt[3]{q}$				
Длина ковіца, мм	$L_{\kappa} = (0.841,16)660\sqrt[3]{q}$	$L_{k1} = (0.871,13)$				
		$(1050 + 765\sqrt[3]{q} + 2,5$				
	$B_{\kappa} = (0.851,15)1380 \sqrt[3]{q}$	$B_{R1} = (0.87i.13)$				
Ширина ковша, мм	1 (s,sss,ss,ss,	$(400 + 1060\sqrt[3]{q})$				
Высота боковой стенки	$H_6 = (0,831,17)$	$H_{61} = (0,91,1)$				
ковша, мм	$(710\sqrt[3]{q} - 0,5)$	$(250 + 520\sqrt[3]{q})$				
Высота подъема передней заслонки, мм	$H_n = (0,81,2)716\sqrt[3]{q}$					
Клиренс под ножом ковша, мм	$C = (0,751,25)340\sqrt[3]{q}$	_				
Максимальная скорость,	v _{max} =	$v_{\text{max1}} = 12 + 15,3\sqrt[3]{q} + 0,4$				
км/ч	$=20 - 1.5 \sqrt[3]{q} - 0.4$					

Таблица 8

Элементы рабочего оборудова-	Прямая лопата	Обратная лопата	Драглайн
ния		лопата	
Длина стрелы	$l_c = (0,210,2)\sqrt[3]{m}$	$l_0 = 7\sqrt[3]{q}$	$l_c = (0,450,46) \sqrt[3]{m}$
Длина рукояти	$l_p = (0,70,8)l_o$	$l_p = (0,350,5)l_e$	
Длина дополни- тельной стойки		$l_{cr} = 0.15 \sqrt[3]{m}$	
Ширина ковща	$b_{x} = (1,05$	$(1,1)\sqrt[3]{q}$	$b_{\kappa} = 1,15\sqrt[3]{q}$
Длина ковина	L _k = 1,2	$L_{\kappa} = 1,25 \text{ b}_{\kappa}$	
Высота ковша	$h_K = 0.9$	$h_{\kappa} = 0.9 \sqrt[3]{q}$ $h_{\kappa} = 0.75$	

Примерное распределение массы экскаватора между основными сборочными единицами (в долях от массы всей машины) приведено в табл. 9.

Таблица 9

Рабочее	Uwayaran	Paritie of Section 12 Company						
_			Наименование сборочных единиц					
оборудова-	го устрой-	Ходовое	Плат-	Про-	CTpe-	Рукоять	Ковш	
ние	ства	устрой-	форма	тиво-	ла			
		ство	11080-	Вес				
			ротная		1			
Прямая	колесное	0,25	0,54	0,05	0,07	0,045	0,045	
нопата	гусеничное	0,34	0,45	0,05	0,07	0,045	0,045	
Обратная	колесное	0,24	0,56	0,06	0,07	0,03	0,04	
лопата	гусеничное	0,34	0,46	0,06	0,07	0,03	0,04	
Драглайн	колесное	0,26	0,56	0,06	0,06		0,06	
	гусеничное	0,34	0,48	0,06	0,06		0,06	

Скорости основных движений рабочего органа в зависимости от вида оборудования приведены в табл. 10.

Таблица 10

Тип рабочего	Выполняемое	Скорости движений при вместимости ков-				
оборудования	движение	ma q, м ³				
		0,250,8	1,01,5	23		
Прямая лопа-	Подъем ик	0,5	0,6	0,8		
та	Напор рукояти					
	V _H	0,5	0,6	8,0		
	Возврат рукояти					
	ν _в	$v_{\rm E} = (1,31,5) v_{\rm H}$				
Обратиая	Тяга ковина у	0,35	0,4	0,45		
лопата	Подъем рабоче-					
	го оборудования					
	ν_{ii}	0,25	0,3	0,3		
Драглайн	Тяга ковща и	0,7	0,8	0,9		
	Подъем ковина					
	$\nu_{\rm H}$	0,8	1,0	1,2		

Частоту вращения поворотной платформы можно определить по эмпирической зависимости:

$$n_1 = 3.2 - q$$
; $n_{11} = 6.7 - 0.9q$,

где n_I — первая скорость (для работы с крановым оборудованием), 1/мин;

n_{II} — вторая скорость (для работы с экскавационным оборудованием), 1/мин.

Скорость передвижения экскаватора выбирается равной скорости машины прототипа с дальнейшим уточнением в зависимости от параметров двигателя и трансмиссии.

Так, для экскаваторов на пневмоколесном ходу $v_1 = 19...22$ км/ч, на гусеничном ходу $v_2 = 1,4...2,9$ км/ч (прил. табл. 21-1)

1.2.2. Гидравлические экскаваторы.

Масса экскаватора определяется из условия устойчивости машины (отсутствия сползания юзом) от горизонтальной составляющей силы копания P_{01}

$$P_{0lmax} \leq \mu mq$$
,

где μ = 0,7 — расчетное значение коэффициента трения ходового оборудования о грунт;

mg — вес экскаватора; G = mg;

$$m = \frac{P_{01max}}{u\varrho}.$$

По заданной величине вместимости ковша q из пропорции с прототипом q_n можно получить вес экскаватора:

$$\frac{q}{q_n} = \frac{G}{G_n}$$
, следовательно, $G = \frac{G_n q}{q_n}$

Для ковша обратной лопаты (рис. 4), имеющего q=0,3...3,2 ${\rm M}^3$, ВНИИСтройдормаш рекомендует следующие параметры:

$$R_{\kappa} = 1,25\sqrt[3]{q} + 0,25; b_{\kappa} = 1,5\sqrt[3]{q} - 0,26;$$

$$l_{1} = 0,8\sqrt[3]{q} + 0,2; r_{1} = 0,45\sqrt[3]{q} + 0,08;$$

$$r_{2} \approx 0,5r_{1}; R_{1} = 1,1\sqrt[3]{q} + 0,26.$$

Основные параметры погрузочного ковша можно определить по следующим соотношениям:

$$L_{\kappa} \approx 1,2\sqrt[3]{q}$$
 — длина ковша, м;
 $L_{g} \approx 0,72\sqrt[3]{q}$ — длина днища, м;
 $R_{3} = L_{\kappa} - L_{g}$ — радиус задней стенки, м;
 $b_{\kappa} \approx 1,35L_{\kappa}$ — ширина ковша, м.

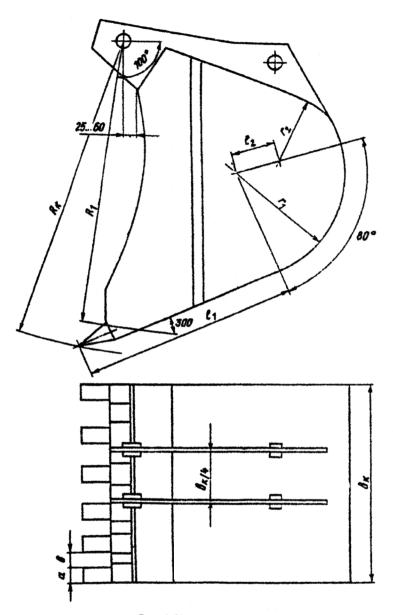


Рис. 4. Ковш обратной лопаты

Для телескопического вида рабочего оборудования рекомендуется брать задний угол; при копании поворотом ковша $\gamma = 25...30^{\circ}$, при втягивании подвижной стрелы $\gamma_1 = 5^{\circ}$ радиус ковша

$$R_{\kappa} = \sqrt{\frac{q}{b_{\kappa}(0.285 + tg\psi)\kappa_{H}}},$$

где к_н = 0,7 — коэффициент наполнения ковша.

Величина угла $\psi = 30^\circ$, $b_x = 1,2\sqrt[3]{q}$. Для данных значений исходных величин $b_x \approx 1,2\sqrt[3]{q}$. Как видно, при этом $b_x = R_x$.

Для планирующего ковша при всех одинаковых величинах $b_{\kappa}^{'}=(1,2...1,6)\;b_{\kappa}.$

1.3. Определение размеров поворотной платформы.

Диаметр опорно-поворотного круга $Д_{on}$, м, на стадии эскизного проектирования определяется по эмпирической зависимости: $Z_{on} \approx 0.0255 \sqrt[3]{G}$.

Площадь опорной поверхности гусеничного ходового оборудования

$$F = \frac{G}{[p]}$$

где [p] — допускаемое давление на грунт; для экскаваторов 3-, 4-, 5- и 6-й размерных групп должно быть соот - ветственно не более [5; 6,3; 9; 11,2]·10⁴ Па.

База гусеничного экскаватора

$$B_0 = \frac{F}{2B_n},$$

где $B_n = 0.0102 \sqrt[3]{G}$ — ширина гусеничной ленты, м.

Колея экскаватора $K \approx B_0$; высота гусеничного хода $H_x = 0.014 \sqrt[3]{G}$.

Для колесного экскаватора принимают K = 2200...2400 мм, база примерно равна базе гусеничного экскаватора.

Координаты оси крепления рабочего оборудования к платформе х_с и у_с для оборудования прямого и обратного действия принимают следующими:

$$x_c = (0,60...0,65)R_{on};$$

 $y_c = H_x + 1_M.$

Размеры собственно базовой машины и базовой машины с рабочим оборудованием представлены соответственно: на колесном ходу — рис. 5,6, 6,6.

1.4. Расчет параметров многоковшовых экскаваторов

1.4.1. Цепной траншеекопатель.

Для гравитационной разгрузки ковшей рекомендуется брать скорость ковшовой цепи $\nu_{\rm q} = 0.8...1.2~{\rm M\cdot c}^{-1}$. Число ссыпок ковшей в минуту выбирают в диапазоне $\nu_{\rm c} = 40...60$.

Следовательно, шаг расстановки ковшей будет определяться по формуле

$$t_{k} = \frac{60v_{u}}{n_{c}}.$$

Вместимость ковша уточняется после определения n_c по производительности экскаватора в грунтах I категории:

$$q = \frac{\Pi_{\tau_1} K_p}{60 n_c K_n}.$$

Параметры ковша приблизительно можно выбрать следующим образом: ширина ковша $b_{\kappa}=0.9b$, где b — ширина траншеи; высота ковша $h_{\kappa}=0.5l_{\kappa}$, где l_{κ} — длина ковша; длина ковша определяется по известным величинам b_{κ} и q из выражения

$$q = 0.5 b_{\kappa} l_{\kappa}^{2}$$
,

следовательно,

$$l_{\kappa} = \sqrt{\frac{2_{q}}{b_{\kappa}}}.$$

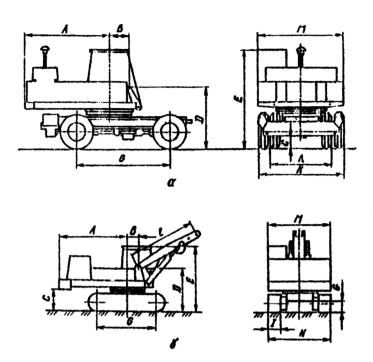


Рис. 5. Базовые параметры одноковшового экскаватора: а - на колесном ходу; б - на гусеничном ходу

Длина рамы рабочего органа \mathbf{l}_p определяется из условия возможности разработки на заданной глубине \mathbf{h} и выгрузки грунта на определенной высоте \mathbf{h}_0 .

$$l_{p} = \frac{(h_{0} + h - 0.5 \Pi_{sb} - h_{k})}{\sin \alpha},$$

t_ц — шаг ковшовой цепи;

 z_3 — число зубьев звездочки ($z_3 = 6...10$).

Длина ковшовой цепи $l_{ij} = 2l_p + \pi Д_{is}$.

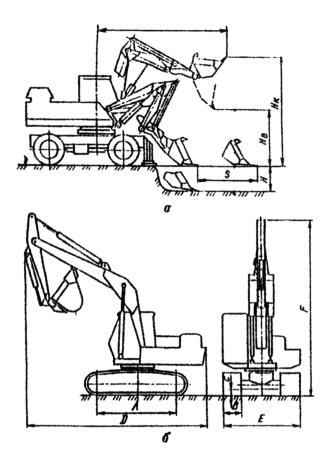


Рис. 6. Параметры одноковшового экскаватора с рабочим оборудованием: а - на колесном ходу; б - на гусеничном ходу

1.4.2. Роторный траншеекопатель.

Диаметр ротора по зубьям, м,

где h — глубина траншеи, м.

Радиус ротора по ковшам, м, $R_{\kappa} = 0.5 \text{Д} - 0.16$.

Наружный и внутренний радиусы диска ротора, м:

$$R_{II} = 0.42 \Pi - 0.10$$
; $R_{II} = 0.35 \Pi - 0.04$.

Ширина ковша, м, $b_{\kappa} = b - 1.7h_{a}$, или $b_{\kappa} = 0.9b$, гле b_{κ} — высота зуба

Размеры сечения кольца (мм) — высота кольца h_{κ} и толщина δ_{κ} :

$$h_r = 70h + 66$$
; $\delta_r = 10.2h + 0.7$.

При определении скорости вращения ротора вначале определяется критическая величина с точки зрения гравитационной раз-

грузки:
$$\mathbf{w}_{\kappa p} = \frac{3,1}{\sqrt{R_{\kappa}}}$$
, а затем принимается $\mathbf{w}_{p} = (0,5...0,9)\mathbf{w}_{\kappa p}$.

Окружная скорость ротора берется в пределах

 $v_p = (1,6...2,7) \text{м·c}^{-1}$. Количество ковшей на серийно выпускаемых машинах $z_r \approx 14...18$.

1.5. Элементы гидропривода машин

1.5.1. Гидропривод служит для движения рабочего оборудования машины, всей машины, поворотной платформы.

Гидропривод состоит из следующих элементов: гидробака, насоса, распределителя, клапанов, фильтра, гидромоторов (гидроцилиндров), трубопроводов и приборов для замера давлений и температуры масла.

Принципиальные схемы гидроприводов некоторых строительных машин приведены в прил. 7.2

1.5.2. Расчет элементов гидропривода.

В качестве примера возьмем расчет основных параметров гидропривода неповоротного бульдозера.

Считаем, что нами определена требуемая сила на гидроцилиндре P_{ii} (H), подъем-опускание отвала производится двумя гидроцилиндрами; удельное давление в гидросистеме $P_{iiom} = 16$ МПа; ход штока определен графически по известным величинам подъсма и опускания отвала L_{xon} ; скорость движения поршня гидроци-

линдра определена требуемой скоростью подъема-опускания отвала ($v_{ora} = 0.25$ м/с).

По заданным величинам P_{π} и P_{π} определим диаметр гидроцилиндра в м:

$$d_{_{II}} = 2\sqrt{\frac{P_{_{II}}}{\pi\Delta P_{_{HOM}}\eta_{_{PMII}}}};$$

где $\Delta P_{\text{ном}} = (0,8...0,9)P_{\text{ном}}$ — перепад давления на гидроцилиндре;

 $\eta_{\text{гмц}}$ — гидромеханический кпд гидроцилиндра;

$$\eta_{\text{EMU}} = 0,9...0,95.$$

Производительность насоса, м³/с:

$$\mathbf{Q}=\mathbf{z}\cdot\boldsymbol{v}_{\mathbf{u}}\frac{\boldsymbol{\pi}d_{\mathbf{u}}^{2}}{\mathbf{A}};$$

где z — число цилиндров, работающих в системе одновременно (2);

d_и — диаметр цилиндра, м;

 v_{ii} — скорость движения поршня; $v_{ii} = 0.25$ м/с.

Мощность привода насоса, кВт:

$$N = \frac{Q \cdot \Delta P_{\text{hom}}}{1000 \cdot \eta_{\text{hom}}};$$

где Q — производительность насоса, м³/с;

 $\eta_{\text{нас}}$ — кпд насоса; $\eta_{\text{нас}} = 0.9$.

Главные параметры распределителей, фильтров, клапанов подбираются по пропускной способности (производительности) насоса Q.

Полезный объем бака определяется по формуле, дм³.

$$V_{non} = (2...3) Q$$

где Q — производительность насоса, л/мин.

Диаметр трубопровода определяется по формуле:

где Д_у — условный проход (внутренний диаметр) трубопровода, м;

Q — поток жидкости через трубопровод, м³/с;

 $\nu_{\text{труб}}$ — скорость потока в трубопроводе, м/с, зависит от вида трубопровода, удельного давления в системе.

Так, при $P_{\rm H} = 16$ МПа в напорном трубопроводе $\nu_{\rm труб} = 4$ м/с . Справочные данные по элементам гидропривода смотри в [10].

2. ОПРЕДЕЛЕНИЕ ПРОИЗВОДИТЕЛЬНОСТИ МАШИН

Для машин циклического действия (бульдозеры, скреперы, одноковшовые экскаваторы) техническая производительность, $м^3/4$, определяется

$$\Pi_{\rm T} = 60 qn \frac{K_{\rm H}}{K_{\rm D}},$$

где q — объем работ за 1 рабочий цикл, м³;

n — число рабочих циклов за 1 минуту, $n = \frac{60}{T_n}$;

здесь Т_ц - время рабочего цикла, с;

К_н — коэффициент наполнения;

К_р — коэффициент разрыхления грунта.

Объем работ за 1 рабочий цикл представляет собой:

 ϕ для бульдозера — объем призмы волочения $q = \frac{H_{\text{отв}}^2 B}{2 t g \alpha}$, M^3 ,

где Нотв — высота отвала, м;

В — длина отвала, м;

α -- угол естественного откоса грунта, α=35+45

 ◆ для скрепера и экскаватора одноковшового — вместимость ковща, м³.

Время 1 рабочего цикла, с, для бульдозеров и скреперов определяется расчетным путем:

$$T_{11} = T_1 + T_2 + T_3 + T_4 + T_5$$

где T₁ — время резания (набора грунта в призму волочения или в ковш);

 $T_l = \frac{l_1}{\nu_p} (l_1 - длина пути резания, м; \nu_p - рабочая скорость$

машины, м·с⁻¹);

Т₂ — время перемещения грунта;

$$T_2 = \frac{1}{v_p}$$
 (l_2 — длина пути перемещения (транспортирования)

грунта, м; $v_{\tau p}$ — скорость машины при транспортировании грунта, м·с·¹);

Т₃ — время выгрузки грунта;

$$T_3 = \frac{l_3}{\nu_p}$$
 (l_3 — длина пути выгрузки грунта, м);

Т₄ — время обратного (холостого) хода;

$$T_4 = \frac{1}{\nu_4}$$
 (l_4 — длина пути обратного хода, м; ν_4 — скорость

движения машины при холостой ездке, м·с-1);

T₅ — время переключения передач и маневрирования при 1 рабочем цикле, с.

Для бульдозеров и скреперов l_1 определяется из величины объема призмы волочения или вместимости ковша q, средней величины глубины резания грунта $h_{\text{bess op}}$ и ширины резания B; $B_{\mathbf{x}}$:

$$I_1 = \frac{q}{h_{peacp}B_{\kappa}}$$

Для скреперов рекомендуются следующие величины (в зави-

CHMOCIN OI BMCCI HMOCIN ROBINA q).						
q, m ³	3	6	10	15	25	
hpes cp, CM	2-3	4-6	8-10	12-14	16-20	

Для бульдозеров максимальная глубина резания определяется по тяговому усилию базового тягача:

$$h_{pes\,cp} = \frac{T - P_f}{KB}$$

где Т — тяговое усилие трактора;

Р. — сила сопротивления перемещению машины (п. 4.1);

К — удельный коэффициент сопротивления копанию (п. 4.1). Рабочая скорость машины определяется по данным аналогов, транспортная скорость скреперов — по рекомендациям п. 1.1.

Длина пути транспортирования грунта l_2 для бульдозеров ограничена — не более 100 м; для скреперов, прицепных к гусеничным тягачам, — не более 200 м; к пневмоколесным тягачам — не более 500 м; самоходных — не более 5 км.

Для бульдозера: T₃ = 4 с — время на подъем отвала;

 $T_5 = 5n + 10p,$

где п — число переключений передач;

р — число разворотов, поворотов машины.

Значения величин коэффициентов K_n и K_p для различных видов грунтов приведены в табл. 11.

Таблица 11

		z dominija z z
Грунт	Kp	Ки
Песок сухой	1,1	0,60,7
Песок влажностью 12-15%	1,11,2	0,70,9
Чернозем и подзолки влажностью 12-15%	1,31,35	1,11,75
Супеси и суглинки влаж-постью 4-6%	1,21,4	1,11,2
Глина сухая	1,21,3	1,01,1
Дресва (выветренная ска-		
ла)	1,51,7	1,01,1

Время рабочего цикла одноковшового экскаватора приводится в технических характеристиках машин или может быть определено по формуле $T_n = 1,58\sqrt{m} + 9$.

Для многоковшовых экскаваторов производительность, $M^3/4$, определяется по формуле

$$\Pi_{\tau} = 0.06 qn \frac{K_{ii}}{K_{p}}$$

где q — вместимость ковша, л;

п — число ссыпок (разгрузов) ковшей за 1 мин;

 $n = z_k n_p$ — для роторных экскаваторов.

Здесь z_{κ} — число ковшей на роторе;

пр — частота вращения ротора, 1/мин

$$n = \frac{v_u}{t}$$
 — для цепных экскаваторов,

где $\nu_{\rm u}$ — линейная скорость ковшей цепи, м/мин,

t_к — шаг расстановки ковшей, м

3. РАСЧЕТ МАШИН НА УСТОЙЧИВОСТЬ

Показателем устойчивости машины является коэффициент устойчивости, представляющий отношение моментов удерживающих к моментам опрокидывающим,

$$K = \frac{\sum M_{y_{R}}}{\sum M_{onp}} \rangle 1.$$

Кроме этого возможны случаи утраты способности работать — протаскивание машины, потеря способности передвигаться

БУЛЬДОЗЕР

Рассмотрим транспортный режим машины в двух случаях:

- движение на подъем;
- движение на площадке с углом крена

В первом случае (рис. 7,а) силы веса машины раскладываем на вертикальную составляющую $G_s = G_{\text{м}} \text{cos} \alpha$ и на горизонтальную составляющую $G_r = G_{\text{m}} \text{sin} \alpha$.

Сила G_r содействует опрокидыванию машины относительно точки A_s а сила G_s удерживает ее в равновесии.

Определим критический угол подъема площадки, т с. такое его значение, когда $\sum M_{yy} = \sum M_{\text{обр}}$

$$K = \frac{\sum M_{yx}}{\sum M_{nxp}} = 1,$$

$$K = \frac{G_{M} \cos \alpha l_{1}}{G_{M} \sin \alpha H_{1}} = 1; \frac{l_{1}}{H_{1}} = tg\alpha_{xp};$$

$$\alpha_{xp} = arctg \frac{\ell_{1}}{H_{1}}.$$

Аналогично, при движении на площадке с углом крена β определяем критическое значение угла крена

$$\sum M_{\kappa} = 0; G_{\kappa} = \frac{B}{2} - G_{\kappa}H_{1} = 0;$$

$$G_{\kappa} \cos \beta \frac{B}{2} = G_{\kappa} \sin \beta H_{1};$$

$$\frac{B}{2H_{1}} = tg\beta_{\kappa\rho}; \beta_{\kappa\rho} = arctg\frac{B}{2H_{1}}.$$

ОДНОКОВШОВЫЙ ЭКСКАВАТОР

Рассмотрим три случая:

- опрокидывание относительно ребра Т;
- опрокидывание относительно ребра U;
- протаскивание.

Для первого случая
$$P = \frac{G \cdot B}{L_2}$$
, (рис 8).

Для второго случая
$$P = \frac{G \cdot B}{L_1}$$

Для случая протаскивания граничная величина силы Р определяется из условия:

$$P \ge GF$$

где F — коэффициент сопротивления перемещению заторможенного экскаватора.

Следовательно,

$$P = G \cdot F$$

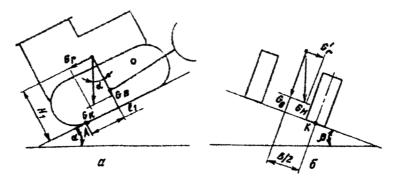


Рис. 7. Схема к расчету устойчивости машин: а- при движении на подъем; б- на площадке с углом крена

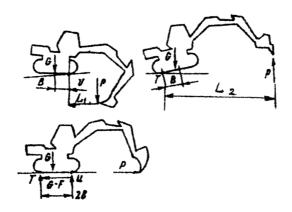


Рис. 8. Схема к расчету устойчивости одноковшового экскаватора

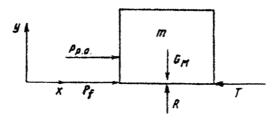


Рис. 9. Схема к тяговому расчету

4. ТЯГОВЫЙ РАСЧЕТ И ОПРЕДЕЛЕНИЕ МОЩНОСТИ ДВИГАТЕЛЯ

4.1. Тяговый расчет

Определим силы сопротивления, возникающие при работе мащин.

Рассмотрим случай работы бульдозера и скрепера на горизонтальном участке (рис. 9).

При этом на машину действуют силы:

- веса машины См;
- сопротивления на рабочем органе Рро,
- сопротивления передвижению машины P_f;
- тяги Т;
- --- реакции грунта на ходовом оборудовании R.

На основании уравнений статики:

$$\sum X = 0; P_f + P_{po} - T = 0; P_f + P_{po} = T \le T_{\varphi};$$
 (1)

$$\Sigma Y = 0;$$
 $G_{M} - R = 0;$ $R = G_{M}.$ (2)

В уравнении (1) написано условие движения машины, т. е. все силы сопротивления меньше силы тяги по сцеплению T_{ϕ} .

Значения величин определяются по зависимостям $P_f = G_M f$, где f — коэффициент сопротивления перемещению (табл. 12).

Таблица 12

Вид новерхно-	Гусени	чный ход	Колесни	ый ход
сти движения	f	φ	f	φ
Асфальт	0,06		0,02	0,7
Сухая грунтовая				
дорога	0,07	0,9	0,05	0,6
Сухой песок	0,15	(),4	0,2	0,3
Укатаппая				
спежная дорога				
	0,06	0,6	0,03	0,3
Влажный несок				
	0,1	0,5	0,16	0,4
Взрыхленный				
групт	0,1	0,7	0,18	(),4

Сила тяги по сцеплению $T_{\phi} = G_{M} \phi$,

где ф — коэффициент сцепления движителя с грунтом (табл. 12).

Для бульдозера сила сопротивления на рабочем органе равна силе сопротивления копанию:

$$P_{p,o} = P_{x} = KBh, MH,$$

где К — удельный коэффициент сопротивления копанию, за висит от вида разрабатываемого грунта (меньшие значения принимают при расчете скреперов);

K = 0,07...0,1 МПа — для грунтов 1 категории;

K = 0,15...0,2 МПа — для грунтов II категории;

K = 0,22...0,25 МПа — для грунтов III категории;

В — ширина резания (рабочего органа), м;

h — глубина резания, м.

Для скрепера сила сопротивления на рабочем органе состоит из сил сопротивления копанию, перемещения призмы и заполнения,

$$\mathbf{P}_{\mathbf{p},\mathbf{o}} = \mathbf{P}_{\kappa} + \mathbf{P}_{\mathbf{f}} + \mathbf{P}_{\mathbf{H}} + \mathbf{P}_{\mathbf{u}},$$

где Р_п — сопротивление наполнению;

 P_n — сопротивление перемещению призмы волочения;

P_f — сопротивление передвижению машины;

$$P_f = (G_c + G_r) f,$$

где G_c — сила тяжести скрепера, H;

G_г — сила тяжести грунта в ковще скрепера, Н;

$$G_{r} = 10 \frac{q \gamma_{r} K_{R}}{K_{p}};$$

 γ_r — средняя плотность грунта в естественном залегании, H/M^3 (табл. 13).

Таблица 13

Грунт	γ, 11/m³	
1	2	
Сухой несок	15 000-16 000	
Влажный несок	16 000-17 000	
Легкая сунесь	15 000-17 000	
Супеси и суглинки	16 000-18 000	
Средний суглинок	16 000-18 000	

1	2
Сухой пыневатый суглинок	16 000-18 000
Тяжелый суглинок	16 500-18 000
Сухая глина	17 000-18 000

Сила сопротивления наполнению $P_{_{\mathbf{H}}} = P_{_{\mathbf{H}}}^{'} + P_{_{\mathbf{H}}}^{'}$,

где $P_{_{\rm H}}^{'}$ — сопротивление силы тяжести поднимаемого столба грунта, H;

$$P'_{ij} = BhH\gamma_{ij}$$

 $P_{_{\rm H}}^{^{''}}$ — сопротивление трению грунта о грунт в ковше, Н;

$$P_{H}^{''} = XBH^{2}\gamma_{1}$$

$$X = \frac{\sin \phi_2}{2}$$
; ϕ_2 — угол внутреннего трения грунта (табл. 14).

Таблица 14

Грунг	Угол внутреннего трения	X	
	φ ₂ , град		
Глина	14-19	0,24-0,31	
Суглинок	24-30	0,37-0,44	
Песок	35-45	0,46-0,50	

Сопротивление перемещению призмы волочения, Н,

$$P_n = yBH^2\gamma_n\mu_2$$

где У — коэффициент объема призмы волочения перед за слонкой; $\mathbf{Y} = 0.5...0.7$;

 μ_2 — коэффициент трения грунта о грунт, μ_2 = 0,3...0,5.

Для нормальной работы скреперов необходимо соблюдение условия (1) (см. с.31). В случае работы с толкачом

$$(T + T_{\tau})K_0 \ge \sum P_i$$

где T_{τ} — толкающее усилие толкача, H;

 K_0 — коэффициент одновременности работ толкача и тягача, $K_0 = 0.85...0.90$.

Для экскаваторов одноковшовых и многоковшовых на рабочем органе возникают силы сопротивления копанию, которые определяются так же, как и для бульдозеров.

4.2. Определение мощности двигателя

В общем виде мощность определяется как работа А в единицу времени t:

$$N = \frac{A}{t}$$
, B_T.

Работа представляет собой произведение силы P, H, на путь l, м:

$$A = P, I, Дж,$$

или момента М, Н-м, на угол поворота ф, рад

$$A = M_i \varphi$$
.

Следовательно,

$$N = \frac{P_i I}{t} = P_i \nu$$
, при ν , м/с

$$N = \frac{M_i \phi}{t} = M_i w$$
, при w, 1/c

Для первого случая
$$N = \frac{P_i \nu}{1000 \cdot \eta}$$
, кВт,

где η — КПД трансмиссии;

для второго случая, подставив вместо w частоту вращения n, 1/мин,

$$N = \frac{M_i n}{9550n}$$
, κB_T .

При определении мощности двигателя тягача бульдозера или скрепера в первую формулу подставляют в числитель сумму сил сопротивления на перемещение машины P_i и на рабочем органе $P_{p,o}$, а также действительную скорость передвижения машины

$$v_g = v_T(1 - \delta),$$

где $\nu_{\rm T}$ — теоретическая (номинальная) скорость тягача, м/с;

 δ — коэффициент буксования; $\delta \approx 0.2$.

Для одноковшового и многоковшовых экскаваторов работа одного ковша определяется по известной зависимости:

$$A = P_{\kappa} I_{pes} = KBh I_{pes} = Kq \frac{K_{H}}{K_{p}}.$$

Мощность копания

$$N_{\kappa} = \frac{KqK_{\pi}}{t_{pex}K_{p}}.$$

Время резания зависит от вместимости ковша

q, m ³	0,3	0,65	1,25	2,0	3,0
tpes, c	6	7	8	9	10

Мощность двигателя, кВт, рассчитывается по формуле

$$N_{_{\text{ЛB}}}\!=\!\!\frac{KqK_{\text{H}.}}{t_{_{\text{pes}}}K_{_{\text{p}}}\eta\text{x}1000}\,,$$

где х — коэффициент использования мощности двигателя;

x = 0,8 при одномоторном приводе;

x = 0.9 при многомоторном приводе;

$$\eta = \eta_{\scriptscriptstyle M} \eta_{\scriptscriptstyle p.o.}$$

 $\eta_{\rm M}$ — КПД трансмиссии, $\eta_{\rm M} = 0.8$;

 $\eta_{p,o}$ — КПД рабочего оборудования, $\eta_{p,o} = 0.5$ для прямой лопаты; $\eta_{p,o} = 0.54$ для драглайна; $\eta_{p,o} = 0.6$ для струга и грейфера.

Для многоковшового экскаватора общая мощность складывается из мощности копания грунта N_{κ} , подъема грунта до точки выгрузки N_n , транспортирования грунта $N_{\tau p}$ и передвижения всей машины N_f .

Мощность копания, кВт,

$$N_{\kappa} = \frac{K \cdot \Pi_{\tau} \cdot K_{\mu}}{3.6 \cdot 10^6 \, K_{p}},$$

где $\Pi_{\rm r}$ — техническая производительность, м³/ч. Мощность передвижения машины, кВт,

$$N_f = \frac{G_3 v_q}{1000 \cdot \eta_{w''}},$$

где G_3 — сила тяжести экскаватора, G_3 = mg. Мощность, затрачиваемая на подъем грунта, к B_T ,

$$N_{\pi} = \frac{G_{rp}H_{\pi \circ \pi}}{t_{\pi \circ \pi} \cdot \eta_{p,o} \cdot 1000} = \frac{\Pi_{\tau} \gamma_{rp}H_{\pi \circ \pi}}{3.6 \cdot 10^{6} \cdot \eta_{p,o}},$$

где G_{rp} — сила тяжести поднимаемого грунта;

 $t_{nод}$ — время подъема, с;

 γ_{rp} — плотность грунта, кг/с³ (табл. 17);

Нпод — путь подъема грунта, м;

 $H_{\text{под}} = H_1 + H_{\text{тр}}$ — для цепных экскаваторов (рис. 10, a),

 $H_{\text{под}} = H_1 + \frac{H_{\text{тр}}}{2}$ — для роторных экскаваторов (рис. 10, 6).

Мощность транспортирования грунта транспортером (конвейером) $N_{\tau p}$ см. курс лекций "Подъемно-транспортные машины".

5. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ОТДЕЛЬНЫХ ЭЛЕМЕНТОВ

5.1. Расчет элементов машин

5.1.1. Узлы и элементы рабочего органа бульдозера.

Одним из основных узлов рабочего органа бульдозера является отвал (рис. 11). Отвал бульдозера состоит из двух элементов (рис. 11, в) — отвала 1 и козырька 2. Параметры отвала — длина В, высота отвала Н, угол наклона отвала ε , угол резания δ , угол заострения β , задний угол α , угол опрокидывания отвала ψ , высота козырька H_1 , угол его наклона ψ_1 , длина прямолинейного участка отвала α , радиус криволинейного участка α .

Ширина отвала В выбирается такой по величине, чтобы в любом положении отвала она была больше ширины базовой машины не менее чем на 100 мм с каждой стороны. Ширина неповоротного отвала выбирается в 2,8...3 раза больше его высоты

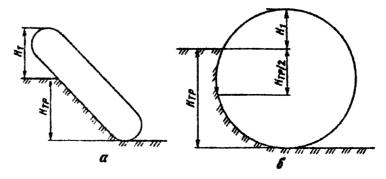


Рис. 10. Схемы к расчету H _{под}: а- для цепных экскаваторов; б - для роторных экскаваторов

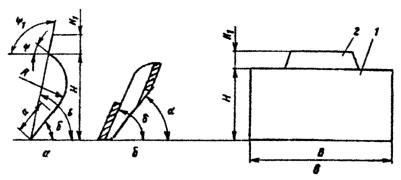


Рис. 11. Отвал бульдозера

Высота отвала, мм, определяется

♦ для бульдозера с неповоротным отвалом

$$H = 500\sqrt[3]{\frac{T_{R}}{10} - \frac{T_{H}}{2}};$$

• для бульдозера с поворотным отвалом

$$H = 450\sqrt[3]{\frac{T_{\text{H}}}{10} - \frac{T_{\text{H}}}{2}},$$

где Т_н — номинальная сила тяги базового тягача, кН.

Другим элементом рабочего органа бульдозера является тол-кающий брус (рис. 12).

5.1.2. Элементы рабочего органа скрепера (рис. 13).

Взаимосвязь между параметрами ковща скрепера можно принять:

$$m = \frac{B_k}{H_k} = 2...3,$$

где Вк — ширина ковша;

Н_к — высота ковша.

Максимальная длина ковша

$$L=\frac{2H}{tg\varphi},$$

где ф — угол естественного откоса грунта.

Длина передней части ковша "а" принимается в пределах 0,1...0,25 м.

Принимаем следующие ориентировочные значения высоты наполнения ковша, Н:

Емкость скрепера q, м3		Меньше 3	6	10	15
Высота	наполнения	1,00-1,13	1,25-1,5	1,8-2,0	2,3
ковина И. м	M				

При проектировании длины задней части ковша следует пользоваться данными, приведенными в табл. 15.

 Таблица 15

 Геометрическая смкость ковща, м³
 Значения отношения длины задлей части і ковща к высоте наполнения ковща Н

 4-6
 1-0,82

 6-8
 0,91-0,80

 10-12
 0,96-0,85

 15-18

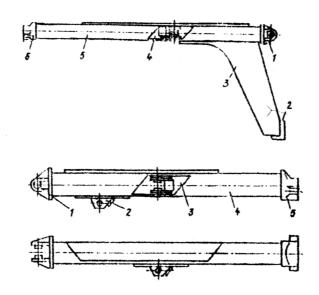


Рис. 12. Толкающие брусья:

а - левый толкающий брус:

1-проушина; 2-втулка; 3,4-кронштейны; 5-балка; 6-шаровая опора; δ - правый толкающий брус:

1-проушина; 2,3-кронштейны; 4-балка; 5-шаровая опора

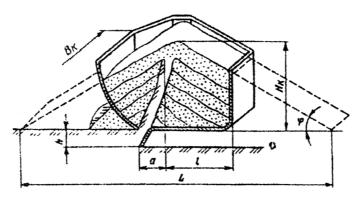


Рис. 13. Основные параметры ковша скрепера и процесс заполнения его грунтом

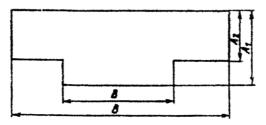


Рис. 14. Схема ножа скрепера

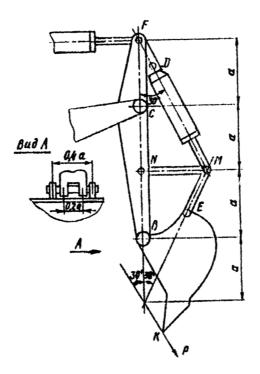


Рис. 15. Рукоять с ковшом обратной лоцаты

Определение значений ширины ковша B_{κ} и глубины резания h см. в предыдущих разделах.

Нож скрепера часто выполняется ступенчатым (рис. 14), при этом $b \approx \frac{B}{2}$.

Скрепер имеет следующие элементы: передняя заслонка, задняя стенка, передняя ось, дышло, рама скрепера. Некоторые из перечисленных элементов представлены на рис. 13, 14.

5.1.3. Элементы одноковшовых экскаваторов.

В рабочее оборудование одноковшовых экскаваторов входят следующие элементы: ковш, стрела и рукоять.

В п. 1.2 даны формулы определения основных размеров всех элементов рабочего оборудования.

Рукоять с ковшом обратной лопаты в сборе представлена на рис. 15.

5.1.4. Элементы рабочего органа многоковшовых экскаваторов.

Определение геометрических параметров элементов рабочего органа цепных экскаваторов см. в п. 1.4.

Размеры ротора и диска роторного экскаватора даются в п. 1.4.2. Высота ковша роторного экскаватора

$$h_{\kappa} = R_{\kappa} - R_{u};$$

ширина ковша $b_{\kappa} = 0.9B$, где B — ширина траншеи.

Рекомендуемое число ковшей на роторе дается в п. 1.4.2. Следовательно, шаг расстановки ковшей

$$t_{\kappa} = \frac{2\pi R_{\kappa}}{z_{\kappa}}.$$

5.2. Расчет элементов машин на прочность

Элементы конструкций машин представляют собой балки, рамы коробчатого сечения. На них действуют силы сжатия и изгиба. Суммарное напряжение, испытываемое конструкцией, определяется по формуле

$$\sigma = \frac{S}{\varphi F} + \frac{M}{W},$$

где S — усилие сжатия;

М — изгибающий момент;

F — площадь поперечного сечения элемента;

W — момент сопротивления сечения;

ф — коэффициент снижения допускаемого напряжения.

При расчете рамы бульдозера ее расчетная схема представляет собой статически неопределимую систему Подробный расчет таких систем представлен в курсе "Строительной механики".

Литература

Основная

- 1. Шестопалов К.К. Подъёмно-транспортные, строительные и дорожные машины и оборудование.: Учеб. — М.: Изд. центр «Академия», 2009. — 319 с.
- 2. Добронравов С.С., Дронов В.Г. Строительные машины и основы автоматизации.: Учеб. М.: Высшая школа, 2007. 575 с.

Дополнительная

- 3. Гаркович Н.Г., Аринченков В.И., Карпов В.В. Машины для земляных работ.: Учеб. М.: Высшая школа, 1982. 335 с.
- 4. Сергеев В. П. Строительные машины и оборудование.: Уч. пос. для вузов. М.: Высшая школа, 1987. 337 с,
- 5. Домбровский H, Γ ., Γ альперия M. H. Строительные машины.: Учеб. для студ. вузов. Ψ . 2. -M.: Высшая школа, 1985. -224 с.
- 6. Мокин М.В., Саблин Р.Ф. Экскаваторы одноковшовые и многоковшовые.: Уч. пос. по курсовому проектированию. Новосибирск, 1984. —109 с.
- 7. Кузин Э. Н., Щеблыкин Е. П. Примеры расчетов и графический материал по строительным машинам.: Уч. пос. М.: ВЗИИТ, 1989. —116 с.
- 8. Щеблыкин Е.П. Строительные машины.: Задание на курсовую работу с методическими указаниями для студентов V курса специальности СМ. М.: ВЗИИТ, 1989.
- 9. Щеблыкин Е.П. Строительные машины: Задание на контрольные работы № 1, 2 с методическими указаниями для студентов V курса специальности СМ. М.: ВЗИИТ, 1989.

СТРОИТЕЛЬНЫЕ И ДОРОЖНЫЕ МАШИНЫ

Рабочая программа и задание на курсовой проект

Редактор Г.В. Тимченко Компьютерная верстка Н.Н. Соловьева

Тип. зак. 3.3.2 Подписано в печать 16.04.12 Гарнитура NewtonC

Усл. печ. л. 3,5

Тираж 100 экз. Ризография Формат 60×90 ¹/₁₆

Редакционный отдел Информационно-методического управления РОАТ, 125993, Москва, Часовая ул., 22/2

Участок оперативной печати Информационно-методического управления РОАТ, 125993, Москва, Часовая ул., 22/2