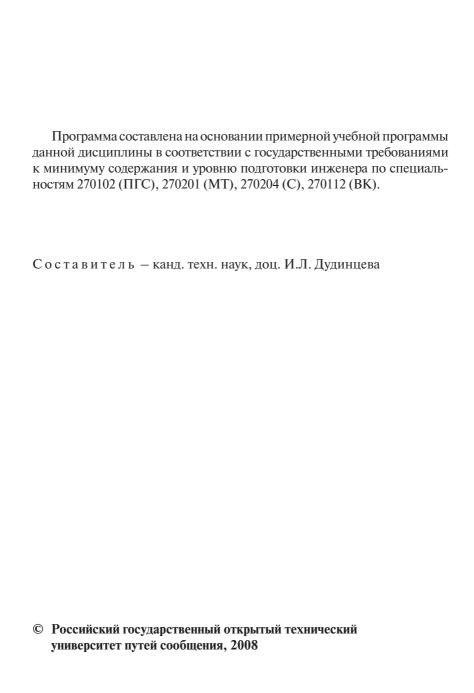
### РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

24/3/1

Одобрено кафедрой «Здания и сооружения на транспорте»

Утверждено деканом факультета «Транспортные сооружения и здания»

# Инженерная геология


Рабочая программа для студентов III курса

специальностей

270102 ПРОМЫШЛЕННОЕ И ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО (ПГС)
270201 МОСТЫ И ТРАНСПОРТНЫЕ ТОННЕЛИ (МТ)
270204 СТРОИТЕЛЬСТВО ЖЕЛЕЗНЫХ ДОРОГ,
ПУТЬ И ПУТЕВОЕ ХОЗЯЙСТВО (С)
270112 ВОДОСНАБЖЕНИЕ И ВОДООТВЕДЕНИЕ (ВК)



Москва - 2008



### 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цель преподавания дисциплины — дать будущим инженерам необходимые геологические знания для обоснованного проектирования и строительства железных дорог, мостов и транспортных тоннелей и других промышленных сооружений.

Основные задачи — научить оценивать инженерно-геологические условия строительных участков, решать вопросы, связанные с выбором оптимальных вариантов строительства.

### 2. ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ ДИСЦИПЛИНЫ

Изучив дисциплину, студент должен:

- 2.1. Знать и уметь использовать:
- геологическую терминологию, основные горные породы, встречающиеся в основаниях сооружений и используемые в виде материала и среды для сооружений;
  - основные физико-геологические процессы;
- основные методы охраны и рационального использования окружающей среды;
- инженерно-геологические условия и особенности геотехнических свойств грунтов при проектировании, строительстве и эксплуатации сооружений.

#### 2.2. Владеть:

- методами оценки особенностей инженерно-геологических условий строительства, выбора оптимальных вариантов, особенно в сложных инженерно-геологических условиях;
- методами защиты и рационального использования окружающей среды.

# 3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

# Специальности ПГС, ВК

| Вид учебной работы            | Всего часов | Kypc – III                    |
|-------------------------------|-------------|-------------------------------|
| Общая трудоемкость дисциплины | 60          |                               |
| Аудиторные занятия:           | 8           |                               |
| Лекции                        | 4           |                               |
| Лабораторный практикум        | 4           |                               |
| Самостоятельная работа:       | 37          |                               |
| Контрольная работа            | 15          | 1                             |
| Вид итогового контроля        |             | Дифференциро-<br>ванный зачет |

## Специальности С, МТ

| Вид учебной работы            | Всего часов | Kypc — III |
|-------------------------------|-------------|------------|
| Общая трудоемкость дисциплины | 80          |            |
| Аудиторные занятия:           | 12          |            |
| Лекции                        | 4           |            |
| Лабораторный практикум        | 8           |            |
| Самостоятельная работа:       | 53          |            |
| Контрольная работа            | 15          | 1          |
| Вид итогового контроля        |             | Экзамен    |

# 4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

# 4.1. РАЗДЕЛЫ ДИСЦИПЛИНЫ И ВИДЫ ЗАНЯТИЙ

## Специальности ПГС, ВК

| №<br>п/п | Раздел дисциплины                                                                            | Лекции,<br>ч | Лабораторные работы, ч |
|----------|----------------------------------------------------------------------------------------------|--------------|------------------------|
| 1        | Основы инженерной геологии и гидрогеологии                                                   | 2            |                        |
| 2        | Основные породообразующие минералы                                                           |              | 2                      |
| 3        | Магматические, осадочные и метаморфические горные породы                                     |              | 2                      |
| 4        | Подземные воды (классификация и законы движения)                                             |              |                        |
| 5        | Инженерно-геологические процессы                                                             | 2            |                        |
| 6        | Инженерно-геологические изыскания в строительстве и при эксплуатации транспортных сооружений |              |                        |

# Специальности С, МТ

| №<br>п/п | Раздел дисциплины                                                                            | Лекции,<br>ч | Лабораторные работы, ч |
|----------|----------------------------------------------------------------------------------------------|--------------|------------------------|
| 1        | Основы инженерной геологии и гидрогеологии                                                   | 2            |                        |
| 2        | Основные породообразующие минералы                                                           |              | 4                      |
| 3        | Магматические, осадочные и метаморфические горные породы                                     |              | 4                      |
| 4        | Подземные воды (классификация и законы движения)                                             |              |                        |
| 5        | Инженерно-геологические процессы                                                             | 2            |                        |
| 6        | Инженерно-геологические изыскания в строительстве и при эксплуатации транспортных сооружений |              |                        |

### 4.2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

### Раздел 1. Основы инженерной геологии и гидрогеологии

Дисциплина «Инженерная геология» и ее связь с другими естественными и техническими науками. Роль инженерной геологии.

Краткие сведения о развитии инженерной геологии как науки. Особая роль инженеров путей сообщения в становлении и развитии инженерной геологии в России.

Строение Земли (понятие о геосферах). Химический состав и тепловой режим литосферы.

### Раздел 2. Основные породообразующие минералы

Минералы как составная часть горных пород. Главнейшие породообразующие минералы, их химический состав и физические свойства.

# Раздел 3. Магматические, осадочные и метаморфические горные породы

Магматические горные породы. Происхождение магматических горных пород. Интрузивные и эффузивные процессы как факторы, определяющие физические свойства магматических пород. Классификация магматических пород. Строительные свойства основных типов магматических пород.

Осадочные породы. Выветривание горных пород. Основные агенты и процессы выветривания. Кора выветривания и ее строение. Элювий. Продукты выветривания, их перенос и отложение. Диагенез. Классификация осадочных пород, их структура, текстура. Основные типы осадочных пород: обломочные, органогенные, хемогенные и смешанные породы. Пески и глины. Основные строительные свойства песчаных и пылевато-глинистых осадочных пород.

Метаморфические горные породы. Метаморфизм горных пород и его типы. Структура и текстура метаморфических пород. Классификация метаморфических пород (основные типы). Строительные свойства метаморфических горных пород. Анизотропность массивов метаморфических пород по ин-

женерно-геологическим свойствам. Трещиноватость горных пород и ее значение для строительства.

# Раздел 4. Подземные воды (классификация и законы движения)

Общие сведения о подземных водах. Гидрогеология как наука. Виды воды в горных породах. Водные свойства горных пород: размокание, набухание, усадка, тиксотропия. Происхождение подземных вод. Химический состав подземных вод. Классификация подземных вод. Верховодка. Грунтовые воды. Межпластовые воды. Напорные и безнапорные воды. Свободная и связанная (пленочная) вода. Вода в виде пара и льда. Артезианские бассейны. Трещинные и карстовые воды. Режим подземных вод. Роль подземных вод в строительстве.

Фильтрационные свойства грунтов. Понятие о коэффициенте фильтрации. Основной закон ламинарного движения грунтовых вод. Методы определения коэффициента фильтрации. Определение расходов грунтовых вод. Понятие о дренажных сооружениях. Факторы, влияющие на коэффициент фильтрации грунтов.

### Раздел 5. Инженерно-геологические процессы

Общие сведения о тектонике. Процессы внутренней динамики Земли. Понятие о тектонических процессах. Глобальная тектоника плит. Колебательные, складчатые и разрывные движения земной коры. Согласное и несогласное залегание слоев. Складчатые и разрывные дислокации. Особенности строительства в районах разрывных и складчатых дислокаций.

Сейсмические явления. Землетрясения, их причины и виды. Гипоцентр и эпицентр. Мощность и интенсивность землетрясений. Сейсмическое районирование территории и его практическое значение. Микросейсмическое районирование участка строительства. Воздействие землетрясений на массивы горных пород и сооружения. Понятие об антисейсмическом строительстве.

### Процессы внешней динамики Земли

Работа ветра. Разрушающая и транспортирующая работа ветра. Эоловые отложения: пески, лесс, их свойства. Строительная оценка эоловых отложений. Основные принципы борьбы с движущимися песками.

Просадочность лессовых грунтов. Природа просадочных явлений в лессовых грунтах. Факторы, влияющие на просадочность (рельеф, генезис лессов и т.д.).

Геологическая работа текучих вод. Смыв. Плоскостная эрозия. Делювий, его инженерно-геологические особенности. Учет специфики склоновых отложений при трассировании железных дорог и при строительстве сооружений.

Размыв. Глубина эрозии. Базис эрозии. Овраги, их образование и меры борьбы с ними. Понятие о селевых потоках, условия их образования и борьба с ними. Пролювий и его инженерногеологические особенности. Геологическая работа рек. Формирование речных долин и влияние на этот процесс тектонических движений. Типы речных террас. Строение речных долин. Аллювий и его фации. Инженерно-геологическая характеристика аллювиальных отложений. Оценка инженерно-геологических условий речных долин при изысканиях для проектирования и строительства железных дорог и инженерных сооружений.

Геологическая работа моря. Разрушительная работа моря (абразия). Перемещение береговых наносов и их роль в защите берегов от размыва. Генетические типы морских осадков. Закономерности формирования морских отложений (фации). Основные принципы защиты берегов от размыва.

Геологическая работа озер и болот. Озера, их типы. Озерные отложения. Болота, их типы. Болотные отложения. Геоботанические методы оценки болот и болотных отложений. Строительные особенности основных генетических типов болот (верховые, низинные). Особенности проектирования и строительства железных дорог на заболоченных территориях.

Процессы, обусловленные действием отрицательных температур. Основные понятия о мерзлых грунтах. Изменение свойств грунтов при замерзании и оттаивании. Сезонная и многолетняя мерзлота. Факторы, обусловливающие глубину

сезонного промерзания. Пучины, причины их образования. Условия, благоприятствующие возникновению пучин. Районы распространения многолетней (вечной) мерзлоты в России. Строение и температурный режим мерзлой толщи. Криогенная текстура и виды подземного льда. Физико-геологические явления в районах распространения вечной мерзлоты: наледи, гидролакколиты, солифлюкция, термокарст, мари. Меры борьбы с мерзлотными явлениями. Мерзлотное инженерногеологическое районирование и прогноз развития мерзлотных процессов в строительных целях.

Геологическая работа ледников. Ледники, условия их образования и виды. Эрозионная деятельность ледников. Ледниковые формы рельефа. Ледниковые отложения: моренные, флювиогляциальные. Распространение ледниковых отложений на территории России. Инженерно-геологическая характеристика ледниковых отложений и учет их особенностей при проектировании и строительстве железных дорог.

Движение пород на склонах. Условия равновесия пород на склонах. Осыпи, обвалы, курумы. Оползни. Элементы оползней. Признаки оползней, причины их возникновения и развития. Типы оползней. Меры борьбы с оползнями.

Процессы, связанные с воздействием воды на горные породы. Плывуны. Истинные плывуны и псевдоплывуны. Критический градиент. Проявление тиксотропии в истинных плывунах. Меры борьбы с плывунами.

Суффозия. Условия ее возникновения. Взвешивающее действие потока подземных вод и его влияние на условия строительства.

Карст. Условия возникновения и развития карста. Формы карста. Значение карстовых процессов. Меры борьбы с карстом.

### Раздел 6. Инженерно-геологические изыскания

Организация инженерно-геологических изысканий. Задачи инженерно-геологических изысканий для составления проекта строительства сооружения. Основные методы инженерно-геологических изысканий: инженерно-геологическая съемка, геолого-разведочные и геофизические работы, аэро- и косми-

ческие методы, особенности их использования при изысканиях линейных сооружений железной дороги. Оценка степени изученности и сложности инженерно-геологических условий площадки строительства. Задание на изыскание; программа изыскательских работ и отчет об изысканиях. Содержание и технология изысканий на разных стадиях проектирования. Принципы применения ЭВМ в изысканиях для создания информационно-поисковых пакетов данных.

Инженерно-геологический контроль при строительстве и эксплуатации транспортных объектов и других сооружений — основа прогнозирования временного изменения инженерно-геологических условий и их влияние на сооружение.

Воздействие человека на природные геологические процессы. Взаимосвязь и взаимовлияние геологической среды и сооружения. Влияние строительства на геологическую среду. Особенности техногенных отложений и их влияние на экологическую ситуацию. Техногенные условия возникновения и активизации физико-геологических процессов. Природоохранные мероприятия.

## 5. ЛАБОРАТОРНЫЙ ПРАКТИКУМ

| №<br>п/п | № раздела<br>дисциплины | Наименование лабораторных работ                                                                                         |
|----------|-------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1        | 2                       | Изучение и определение породообразующих минералов                                                                       |
| 2        | 3                       | Изучение и описание магматических пород. Изучение и описание осадочных пород. Изучение и описание метаморфических пород |

### 6. САМОСТОЯТЕЛЬНАЯ РАБОТА

Студент выполняет одну контрольную работу для закрепления теоретических знаний. Суть работы — письменные, иллюстрированные схемами, ответы на контрольные вопросы. Объем 18-25 страниц.

## 7. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

### 7.1. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

#### Основная

- 1. Ананьев В.П., Потапов А.Д. Инженерная геология. М.: Высшая школа, 2002.
- 2. Ш ульгин Д.И. Инженерная гелогия для строителей железных дорог. М.: Желдориздат, 2002.

#### Дополнительная

- 3. Седенко М.В. Геология, гидрогеология и инженерная геология. Минск: Высшая школа, 1975.
- 4. Маслов Н. Н. Основы инженерной геологии и механики грунтов. М.: Высшая школа, 1982.
  - 5. Справочник по инженерной геологии. М.: Недра, 1981.
- 6. Пешковский Л.М., Перескокова Т.М. Инженерная геология. М.: Высшая школа, 1982.

# 7.2. СРЕДСТВА ОБЕСПЕЧЕНИЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Используются имеющиеся на кафедре коллекционные материалы.

## 8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Специализированная лаборатория механики грунтов.

### ИНЖЕНЕРНАЯ ГЕОЛОГИЯ

Рабочая программа

Редактор *П.В. Елистратова* Компьютерная верстка *А.Ю. Байкова* 

| Тип. зак.                   | Изд. зак. 139     | Тираж 1 500 экз.                |
|-----------------------------|-------------------|---------------------------------|
| Подписано в печать 16.09.08 | Гарнитура NewtonC |                                 |
| Усл. печ. л. 0,75           |                   | Формат $60 \times 90^{1}/_{16}$ |

Издательский центр и Участок оперативной печати Информационно-методического управления РГОТУПСа, 125993, Москва, Часовая ул., 22/2