ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

24/16/11

Одобрено кафедрой «Здания и сооружения на транспорте»

ЖЕЛЕЗОБЕТОННЫЕ И КАМЕННЫЕ КОНСТРУКЦИИ

Методические указания к выполнению лабораторных работ на ЭВМ для студентов V курса

специальности

270102.65 ПРОМЫШЛЕННОЕ И ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО

Москва – 2012

Составитель: канд. техн. наук, доцент Н.Н.ТРЕКИН

Рецензенты: канд. техн. наук, профессор И.А. САЗЫКИН

© Московский государственный университет путей сообщения, 2012

ОБЩИЕ УКАЗАНИЯ

Теория расчета железобетонных конструкций основана на законах механики и многочисленных экспериментальных данных. Для более глубокого понимания работы конструкций под нагрузкой, правильной оценки напряженно-деформированного состояния, особенно стадии предшествующей разрушению, а также закрепления теоретических знаний, в учебном курсе предусмотрены лабораторные работы.

Настоящие лабораторные работы выполняются полностью на персональных ЭВМ, индивидуально каждым студентом, с анимацией процесса испытания железобетонных конструкций. Программа разработана на кафедре железобетонных конструкций МГСУ. Всего предусмотрено четыре лабораторные работы, в объем которых входит теоретическое и "экспериментальное" определение прочности, трещиностойкости и жесткости изгибаемых и внецентренно-сжатых железобетонных элементов.

Каждая работа состоит из следующих разделов: — цель и задачи исследований; — определение прочностных и деформационных характеристик бетона и арматуры на основе испытаний стандартных образцов в режиме анимации; конструкция опытного образца; — схема испытания; — расчет по первой и второй группам предельных состояний; виртуальное испытание запроектированной конструкции; сопоставление результатов расчета с данными виртуальных испытаний.

Для усвоения материалов лабораторных работ студент должен ознакомиться с первой частью теоретического курса железобетонных конструкций и иметь представления о требованиях основного нормативного документа СНиП 2.03.01-84* "Бетонные и железобетонные конструкции".

Работа № 1.

ИСПЫТАНИЕ ЖЕЛЕЗОБЕТОННОЙ БАЛКИ НА ПРОЧНОСТЬ ПО НОРМАЛЬНЫМ СЕЧЕНИЯМ

Цель работы — изучение напряженно-деформированного состояния балки, в зоне действия изгибающего момента.

Задачи работы:

1. Ознакомиться с методом расчета железобетонной балки по образованию трещин и по прочности по нормальным сечениям.

2. Провести наблюдение за характером образования и развития трещин на различных этапах нагружения вплоть до разрушения по нормальному сечению.

3. Проанализировать причины образования трещин и разрушения балки.

4. Ознакомиться с характером прогиба балки под нагрузкой и построить график зависимости "нагрузка-деформация" по опытным данным.

5. На основе сравнения теоретической и опытной разрушающей нагрузки оценить качество конструкции.

1.1. Определение расчетных характеристик бетона и арматуры

1.1.1. Определение характеристик бетона по результатам испытания кубов

Для определения прочности бетона при сжатии испытывают образцы-кубы, принимая за эталон куб с размером 15 см, изготовленный из того же замеса бетона, что и лабораторные конструкции. Для проведения лабораторных работ достаточно испытать три куба. Схема испытания показана на рис. 1.

Среднее значение кубиковой прочности бетона по результатам испытания кубов:

$$\overline{R} = \frac{(R_1 + R_2 + R_3)}{3} =$$
M Π a.

Призменную прочность бетона и прочность бетона при осевом растяжении, отвечающие средней кубиковой проч-

Рис. 1. Испытание стандартного бетонного куба на сжатие: *а* — схема испытания; *б* — форма разрушения образца

ности определим по эмпирическим зависимостям соответственно:

$$\overline{R}_b = (0,77 - 0,00125 \cdot \overline{R}) \cdot \overline{R} =$$
 M Π a;

$$\overline{R}_{bt} = \frac{5 \cdot R}{45 + \overline{R}} = \qquad \text{M}\Pi a$$

Начальный модуль упругости бетона, отвечающий средней кубиковой прочности:

$$\overline{E}_b = \frac{55000 \cdot R}{27 + \overline{R}} = \qquad \text{MIIa.}$$

1.1.2. Определение расчетных характеристик арматуры

Расчетные характеристики арматуры определяют на основе испытания образцов на разрывной машине по схеме, как это показано на рис. 2, *a*, *б*. По результатам замера усилий и деформаций арматуры строят график зависимости " σ - ϵ " (рис. 2, *в*), где $\sigma = N/A_s$; $\epsilon = \Delta L/L$; здесь ΔL — приращение длины, вследствие растяжения. В качестве опытной величины сопротивления растяжению стержней арматуры A-III принимается средняя величина (по результатам испытания трех образцов) физического предела текучести (σ_r):

$$\overline{R}_{s} = \frac{(\sigma_{y1} + \sigma_{y2} + \sigma_{y3})}{3} = M\Pi a.$$

5

Рис. 2. Испытание арматуры на растяжение: *a* — расположение опытного образца в испытательном стенде; *б* — опытный образец после испытания; *в* — общий вид диаграммы растяжения арматуры класса A-III

1.2. Геометрические размеры и схема армирования балки

Геометрические размеры и схема армирования испытываемой балки показаны на рис. 3. Опытный образец армирован двумя плоскими каркасами с нижней продольной арматурой класса А-III. В средней части балки сжатая арматура не установлена. Для предотвращения преждевременного разрушения по наклонным сечениям предусмотрена поперечная арматура.

Рис. 3. Схема армирования балки

1.3. Определение характеристик приведенного сечения

Исходными данными для определения характеристик приведенного сечения, показанного на рис. 3 являются:

высота сечения — h = мм; ширина сечения — b = мм;

расстояние от нижней грани сечения до центра тяжести арматуры $A_{-} - a =$ мм;

площадь поперечного сечения ненапрягаемой арматуры — $A_{.} = MM^{2}$;

модуль упругости бетона — Е, = МПа;

модуль упругости ненапрягаемой арматуры — E_s = , МПа. Площадь приведенного сечения:

$$A_{red} = b \cdot h + \alpha_s \cdot A_s = MM^2,$$

где $\alpha_s = E_s / E_b =$

Статический момент площади приведенного сечения относительно нижней грани:

$$S_{red} = b \cdot \frac{h^2}{2} + \alpha_s \cdot A_s \cdot a = MM^3.$$

Расстояние от центра тяжести приведенного сечения до нижней грани:

$$y_o = \frac{S_{red}}{A_{red}} = MM.$$

Момент инерции приведенного сечения относительно центра тяжести сечения:

$$I_{red} = b \cdot \frac{h^3}{12} + b \cdot h \cdot \left(y_o - \frac{h}{2}\right)^2 + \alpha_s \cdot A_s \cdot \left(y_o - a\right)^2 = \operatorname{MM}^4.$$

Момент сопротивления приведенного сечения относительно нижней грани:

$$W_{red} = \frac{I_{red}}{y_o} = M^3.$$

7

Упруго-пластический момент сопротивления относительно нижней грани сечения:

$$W_{\rm p1} = 1,75 \cdot W_{red} = {\rm MM}^3.$$

1.4. Определение теоретического момента трещинообразования

Теоретический момент образования трещин:

= H·мм.

1.5. Определение теоретического разрушающего момента

В поперечном сечении балки действуют сжимающие усилия, которые воспринимаются бетоном и растягивающие, воспринимаемые нижней арматурой. Исходя из этого расчетная схема

поперечного сечения будет иметь вид, как это показано на рис. 4.

Высота сжатой зоны в стадии разрушения:

$$x = \frac{\overline{R}_s \cdot A_s}{\overline{R}_b \cdot b} = \qquad \text{MM}.$$

Теоретическое значение разрушающего момента:

Рис. 4. Расчетная схема поперечного сечения балки

$$M_{ul,cal} = \overline{R}_b \cdot b \cdot x \cdot \left(h_o - \frac{x}{2}\right) = H \cdot MM.$$

1.6. Схема нагружения балки

Нагрузка на балку прикладывается в двух точках (в третях пролета) с помощью жесткой траверсы, как это показано на рис. 5. Вертикальные перемещения опор и в середине пролета измеряются с помощью индикаторов часового типа. Деформации сжатой и растянутой граней балки в зоне чистого изгиба измеряются с помощью механических тензометров.

Вес загрузочных устройств (траверсы и т.д.) — P = KH. Собственный вес балки — $q = b \cdot h \cdot L = KH$.

Рис.5. Схема загружения балки и размещения измерительных приборов (a) и эпюра моментов от действия сил F (б)

Нагрузка, соответствующая теоретическому моменту трещинообразования:

$$F_{crc,cal} = 3 \cdot \frac{M_{crc,cal}}{L_o} - 3 \cdot q \cdot \frac{L_o}{8} - 0.5 \cdot P = \kappa H.$$

Нагрузка, соответствующая теоретическому разрушающему моменту:

$$F_{ul,cal} = \frac{3 \cdot M_{ul,cal}}{L_o} - 3 \cdot q \cdot \frac{L_o}{8} - 0, 5 \cdot P = \qquad \kappa H.$$

1.7. Результаты испытания балки

Испытание балки производится в режиме анимации. Для увеличения нагрузки необходимо нажимать на клавишу "Enter". При этом на дисплее будет демонстрироваться для

каждого этапа нагрузки: поведение балки под нагрузкой, эпюра деформаций соответственно по сжатой и растянутой зонам; эпюра нормальных напряжений в бетоне и арматуре; график развития изгибающего момента и прогиба в среднем сечении балки.

После того как достигнута разрушающая нагрузка необходимо построить график зависимости прогиба конструкции от изгибающего момента (рис. 6). На рисунке необходимо отметить теоретические и опытные значения момента, соответствующие трещинообразованию и разрушению, и зарисовать схему разрушения балки на рис. 7.

Рис. 6. График зависимости прогиба балки от изгибающего момента

Рис. 7. Карта трещин и схема разрушения

1.8. Сопоставление теоретических и экспериментальных значений

Опытный момент трещинообразования:

$$M_{crc,exp} = \left(F_{crc,exp} + 0.5 \cdot P\right) \cdot \frac{L_o}{3} + q \cdot L_o \cdot \frac{L_o}{8} = \kappa \text{Hm.}$$

Величина отклонения в %:

$$\frac{\left(M_{crc,cal} - M_{crc,exp}\right)}{M_{crc,cal}} \cdot 100 = \%.$$

Значение опытного разрушающего момента:

$$M_{ul,\exp} = \left(F_{ul,\exp} + 0.5 \cdot P\right) \cdot \frac{L_o}{3} + q \cdot L_o \cdot \frac{L_o}{8} = \kappa \text{Hm}.$$

Величина отклонения в %:

$$\frac{\left(M_{ul,cal}-M_{ul,exp}\right)}{M_{ul,cal}}\cdot 100 = \%$$

Работа № 2.

ИСПЫТАНИЕ ЖЕЛЕЗОБЕТОННОЙ БАЛКИ НА ИЗГИБ С РАЗРУШЕНИЕМ ПО НАКЛОННЫМ СЕЧЕНИЯМ

Цель работы — изучение напряженно-деформированного состояния балки, разрушающейся по наклонному сечению.

Задачи работы:

1. Определить прочность балки по наклонному сечению.

2. Провести наблюдение за характером образования и развития трещин на различных этапах загружения вплоть до разрушения по наклонному сечению.

3. Проанализировать причины образования трещин и схемы разрушения балки.

4. На основе сравнения теоретической и опытной разрушающей нагрузки оценить качество конструкции.

2.1. Определение расчетных характеристик бетона и арматуры

2.1.1. Определение характеристик бетона по результатам испытания кубов

Для определения прочности бетона при сжатии испытывают образцы-кубы, принимая за эталон куб размером 15 см, изготовленный из того же замеса бетона, что и лабораторные конструкции. Для проведения лабораторных работ достаточно испытать три куба. Схема испытания показана на рис. 1.

Среднее значение кубиковой прочности бетона по результатам испытания кубов:

$$\overline{R} = \frac{(R_1 + R_2 + R_3)}{3} = \text{M}\Pi \text{a.}$$

Призменная прочность бетона и прочность бетона при осевом растяжении, отвечающие средней кубиковой прочности определим по эмпирическим зависимостям соответственно:

$$\overline{R}_b = (0,77 - 0,00125 \cdot \overline{R}) \cdot \overline{R} =$$
MIIa;

$$\overline{R}_{bt} = \frac{5 \cdot R}{45 + \overline{R}} =$$
 MIIa.

Начальный модуль упругости бетона, отвечающий средней кубиковой прочности:

$$\overline{E}_b = \frac{55000 \cdot R}{27 + \overline{R}} = \qquad \qquad \text{M}\Pi a$$

2.1.2. Определение расчетных характеристик арматуры

Расчетные характеристики арматуры определяют на основе испытания образцов на разрывной машине по схеме, как это показано на рис. 8, *a*, *б*. По результатам замера усилий и деформаций арматуры строят график зависимости " σ - ε " (рис. 8, *в*), где $\sigma = N/A_s$; $\varepsilon = \Delta L/L$; здесь ΔL — приращение длины, вследствие растяжения. Опытная величина сопротивления растяжению проволочной арматуры Вр-I принимается как средняя величина (по результатам испытания трех образцов) условного предела текучести (σ_v):

Рис. 8. Испытание арматуры на растяжение: *a* — расположение опытного образца в испытательном стенде; *б* — опытный образец после испытания; *в* — общий вид диаграммы растяжения арматуры класса Bp-I

$$\overline{R}_{S} = \frac{0.75(\sigma_{u1} + \sigma_{u2} + \sigma_{u3})}{3} = \qquad \text{MIIa.}$$

Распределение напряжений растяжения в хомутах по длине наклонной трещины происходит неравномерно, как это видно из рис. 9. Максимальное значение напряжения у хомутов, ближе к пересечению наклонной трещиной нижней растянутой зоны и минимальные у вершины наклонной трещины, длина проекции которой принимается равной C_0 . Для учета неравномерности в распределении напряжений, за сопротивление растяжению поперечной арматуры, принимаем величину условного предела текучести, умноженную на коэффициент условия работы γ_{e_1} :

Рис. 9. Схема наклонного сечения балки

2.2. Геометрические размеры и схема армирования балки

Геометрические размеры и схема армирования испытываемой балки показаны на рис. 10. Опытный образец арми-

Рис. 10. Геометрические размеры и схема армирования балки

рован двумя плоскими каркасами с нижней продольной армату-A-III поперечной арматурой рой класса И класса Вр-I, с площадью сечения одного стержня A_{swi} = мм². Плоские каркасы объединены в пространственный с помощью хомутов. Поперечная арматура располагается с шагом S = MM равномерно по всей длине балки. Для предотвращения преждевременного разрушения по нормальным сечениям предусмотрена дополнительная продольная арматура.

2.3. Схема нагружения балки

Нагрузка на балку прикладывается в двух точках (в четвертях пролета) с помощью жесткой траверсы, как это показано на рис. 11. Деформации растяжения и сжатия в наклонном сечении измеряются с помощью рычажных тензометров. Вес загрузочных устройств (траверсы и т.д.) — P = кH,

Рис. 11. Схема нагружения балки с расположением измерительных приборов (а) и ее расчетная схема с эпюрой поперечных сил (б)

собственный вес балки: $q = 6 \cdot h \cdot 25 = \kappa H/\pi.M.$

2.4. Определение теоретической разрушающей поперечной силы

Исходные данные:

рабочая высота сечения — $h_o =$ мм; ширина поперечного сечения — b = мм; шаг хомутов — s = мм;

расстояние от опоры до ближайшей сосредоточенной силы — С = мм;

число срезов хомута в сечении балки — n = 2; $\phi_{b2} = 2$ — для тяжелого бетона.

Погонное усилие в поперечных стержнях:

$$q_{sw} = \frac{\overline{R_{sw} \cdot A_{sw,i} \cdot n}}{S} = H/MM.$$

Длина проекции наклонной трещины на продольную ось элемента:

$$C_o = \sqrt{\varphi_{b2} \cdot \overline{R}_{bt} \cdot \frac{h_o^2}{q_{sw}^2}} = MM$$

Рис. 12. Схема усилий при расчете прочности изгибаемого элемента по наклонным сечениям

Значение $C_{_{0}}$ должно удовлетворять конструктивным требованиям:

Назначьте С в соответствии с этими требованиями

$$C_{o} =$$

MM.

Разрушающая поперечная сила из условия расчета на действие поперечной силы:

$$Q_{ul,cal} = \varphi_{b2} \cdot \overline{R}_{bl} \cdot b \cdot \frac{h_o}{C} + q_{sw} \cdot C_o =$$
 H

2.5. Результаты испытания балки

Испытание балки производится в режиме анимации. Для увеличения нагрузки необходимо нажимать на клавишу "Enter". При этом на дисплее для каждого этапа нагрузки будет демонстрироваться: поведение конструкции под нагрузкой; график роста деформаций соответственно по сжатой и растянутой зонам.

После того как достигнута разрушающая нагрузка необходимо зарисовать схему разрушения балки на рис. 13.

Рис. 13. Карта трещин и схема разрушения

2.6. Сопоставление теоретических экспериментальных значений

Экспериментальная разрушающая поперечная сила:

$$Q_{ul,\exp} = F_{ul,\exp} + \frac{q \cdot L_o}{4} + 0.5 \cdot P = \kappa H.$$

Величина отклонения в %:

$$\frac{\left(Q_{ul,cal}-Q_{ul,exp}\right)}{Q_{ul,cal}}\cdot 100\% = \%$$

17

Работа № 3

ИСПЫТАНИЕ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЫ НА ПРОЧНОСТЬ ПРИ ВНЕЦЕНТРЕННОМ СЖАТИИ

Цель работы — исследование напряженно-деформированного состояния внецентренно-сжатого элемента при большом эксцентриситете приложения продольной силы.

Задачи работы:

1. Определить расчетную величину разрушающей нагрузки.

2. Провести наблюдение за характером образования и развития трещин, а также картиной разрушения при внецентренном сжатии.

3. Проанализировать причины образования трещин и разрушения колонны.

4. На основе сравнения теоретической и опытной разрушающих нагрузок оценить качество конструкции.

3.1. Определение расчетных характеристик бетона и арматуры

3.1.1. Определение характеристик бетона по результатам испытания кубов

Для определения прочности бетона при сжатии испытывают образцы-кубы, принимая за эталон куб размером 15 см, изготовленный из того же замеса бетона, что и лабораторные конструкции. Для проведения лабораторных работ достаточно испытать три куба. Схема испытания показана на рис. 1.

Среднее значение кубиковой прочности бетона по результатам испытания кубов:

$$\overline{R} = \frac{(R_1 + R_2 + R_3)}{3} = \qquad \text{M}\Pi \text{a}.$$

Призменную прочность бетона и прочность бетона при осевом растяжении, отвечающие средней кубиковой прочности определим по эмпирическим зависимостям соответственно:

$$\overline{R}_{b} = (0,77 - 0,00125 \cdot \overline{R}) \cdot \overline{R} = M\Pi a;$$

$$\overline{R}_{bi} = \frac{5 \cdot R}{45 + \overline{R}} = M \Pi a.$$

Начальный модуль упругости бетона, отвечающий средней кубиковой прочности:

$$\overline{E}_{b} = \frac{55000 \cdot \overline{R}}{27 + \overline{R}} =$$
 MIIa.

Определение характеристики сжатой зоны бетона:

$$\omega = 0.85 - 0.008 \cdot R_{b} =$$

Определение граничного значения относительной высоты сжатой зоны бетона:

$$\zeta = \frac{\omega}{\frac{R}{1 + \frac{R}{400}}} \cdot \left(1 - \frac{\omega}{1,1}\right) =$$

3.1.2. Определение расчетных характеристик арматуры

Расчетные характеристики арматуры определяют на основе испытания образцов на разрывной машине по схеме, как это показано на рис. 2, *a*, *b*. По результатам замера усилий и деформаций арматуры строят график зависимости " σ - ϵ " (рис. 2, *в*), где $\sigma = N/A_s$; $\epsilon = \Delta L/L$; здесь ΔL — приращение длины, вследствие растяжения.

В растянутой зоне устанавливается стержневая арматура класса A-III с физическим пределом текучести (σ_v):

$$\overline{R}_{s} = \frac{0.75(\sigma_{y1} + \sigma_{y2} + \sigma_{y3})}{3} = M\Pi a.$$

В сжатой зоне усганавливается гладкая стержневая арматура класса A-I с физическим пределом текучести (σ_{γ}). Поскольку арматура A-I работает одинаково на растяжение и сжатие, в качестве расчетного сопротивления сжатию принимаем среднее значение физического предела текучести:

$$\overline{R}_{SC} = \frac{0.75(\sigma_{y1} + \sigma_{y2} + \sigma_{y3})}{3} = M\Pi a.$$

3.2. Геометрические размеры и схема армирования колонны

Геометрические размеры и схема армирования испытываемой колонны показаны на рис. 14. Опытный образец изготавливается в виде двухконсольной колонны с целью обеспечения приложения нагрузки с большим эксцентриситетом. Колонна армирована двумя плоскими каркасами с растянутой продольной арматурой класса А-III с площадью сечения одного стержня $A_{\rm s,i}$ = мм² и сжатой арматурой класса А-I с площадью сечения одного стержня $A_{\rm sc,i}$ = мм². Плоские каркасы объединены в пространственный с помощью хомутов.

3.3. Схема нагружения колонны

Нагрузка на колонну прикладывается по торцам с эксцентриситетом, относительно центра тяжести растянутой арматуры "е", как это показано на рис. 15.

Деформации растяжения и сжатия в сечении колонны измеряются с помощью рычажных тензометров.

Рис. 14. Геометрические размеры и схема армирования колонны

Рис. 15. Схема приложения нагрузки и размещения измерительных приборов

3.4. Определение теоретической продольной разрушающей силы

Исходные данные: ширина сечения — b = мм; рабочая высота сечения — h_o = мм; эксцентриситет продольного усилия относительно центра тяжести арматуры $A_s - e =$ мм; эксцентриситет продольного усилия относительно центра тяжести арматуры $A_s^1 - e^1 =$ мм; граничная высота сжатой зоны — $x_r = \xi \cdot h_o =$ мм.

Высота сжатой зоны, в соответствии с расчетной схемой сечения, показанной на рис. 16, вычисляется из условия равенства нулю суммы моментов всех сил относительно оси действия продольной силы:

$$x = (h_o - e) + \sqrt{\left(e - h_o\right)^2 + \frac{2 \cdot \left(\overline{R}_s \cdot A_s \cdot e - \overline{R}_{sc} \cdot A_s^{\ l} \cdot e^l\right)}{\overline{R}_b \cdot b}} = MM.$$

21

Рис. 16. Расчетная схема сечения при расчете на внецентренное сжатие

Рис. 17. Карта трещин и схема разрушения

Так как x < x_r , имеем случай внецентренного сжатия с большим эксцентриситетом.

Теоретическое значение продольной разрушающей силы вычисляется из условия равенства О сумм проекций всех сил на продольную ось:

$$N_{ul,cal} = \overline{R}_b \cdot b \cdot x + \overline{R}_{sc} A_s^{\ l} - \overline{R}_s \cdot A_s = \kappa H.$$

3.5. Результаты испытания колонны

Испытание колонны производится в режиме анимации. Для увеличения нагрузки необходимо нажимать на клавишу "Enter". При этом на дисплее демонстрируется: поведение конструкции под нагрузкой; эпюра деформаций соответственно по сжатой и растянутой зонам; эпюра нормальных напряжений в бетоне и арматуре; график развития деформаций сжатия и растяжения по данным измерения рычажных тензометров.

После того как достигнута разрушающая нагрузка необходимо зарисовать схему разрушения колонны на рис. 17.

3.6. Сопоставление результатов опыта и расчетов

Теоретическая разрушающая продольная сила — N_{ulcal} = кH. Экспериментальная разрушающая продольная сила — N_{ulcap} = кH. Величина отклонения в %:

$$\frac{\left(N_{ul,cal} - N_{ul,exp}\right)}{N_{ul,cal}} \cdot 100\% = \%$$

Работа №4

ИСПЫТАНИЕ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ ЖЕЛЕЗОБЕТОННОЙ БАЛКИ

Цель работы — изучение напряженно-деформированного состояния предварительно напряженного изгибаемого элемента.

Задачи работы:

1. Оценить трещиностойкость балки с учетом потерь предвари-тельного напряжения в рабочей арматуре и определить ее несущую способность и прогиб на стадии до образования трещин.

2. Провести наблюдение за характером образования и развития трещин на различных этапах загружения вплоть до разрушения по нормальному сечению.

3. Проанализировать причины образования трещин и разрушения балки.

4. Ознакомиться с характером прогиба балки под нагрузкой и построить график зависимости "нагрузка-деформация" по опытным данным.

5. На основе сравнения теоретических и опытных значений момента трещинообразования, разрушающей нагрузки и предельного прогиба оценить качество конструкции.

4.1. Определение расчетных характеристик бетона и арматуры

4.1.1. Определение характеристик бетона на момент отпуска натяжения по результатам испытания кубов

Для определения прочности бетона при сжатии испытывают образцы-кубы, принимая за эталон куб размером 15 см, изготовленный из того же замеса бетона, что и лабораторные конструкции. Для проведения лабораторных работ достаточно испытать три куба. Схема испытания показана на рис. 1.

Среднее значение кубиковой прочности бетона по результатам испытания кубов:

$$\overline{R} = \frac{(R_1 + R_2 + R_3)}{3} =$$
 M Πa .

Призменная прочность бетона и прочность бетона при осевом растяжении, отвечающие средней кубиковой прочности определим по эмпирическим зависимостям соответственно:

$$\overline{R}_b = (0,77 - 0,00125 \cdot \overline{R}) \cdot \overline{R} = \qquad \qquad M \Pi a;$$

Начальный модуль упругости бетона, отвечающий средней кубиковой прочности:

$$\overline{E}_b = \frac{55000 \cdot R}{27 + \overline{R}} = \qquad \qquad M \Pi a.$$

4.1.2. Определение расчетных характеристик арматуры

Расчетные характеристики арматуры определяют на основе испытания образцов на разрывной машине по схеме, как это показано на рис. 18, *a*, *б*. По результатам замера усилий и деформаций арматуры строят график зависимости " σ - ϵ " (рис. 18, *в*), где $\sigma = N/A_s$; $\epsilon = \Delta L/L$; здесь ΔL — приращение длины, вследствие растяжения. Опытная величина сопротивления растяжению стержневой арматуры A-V принимается как средняя величина (по результатам испытания трех образцов) условного предела текучести (σ_n):

$$\overline{R}_{s} = \frac{0.75(\sigma_{u1} + \sigma_{u2} + \sigma_{u3})}{3} = M \Pi a.$$

4.2. Геометрические размеры и схема армирования железобетонной балки

Геометрические размеры и схема армирования испытываемой балки показаны на рис. 19. Опытный образец армирован двумя плоскими каркасами и предварительно напрягаемой стержневой арматурой класса A-V. Предварительное напряжение создается электротермическим способом с натяжением на упоры. В средней части балки сжатая арматура не установлена. Для предотвращения преждевременного разрушения по наклонным сечениям предусмотрена поперечная арматура.

Рис. 18. Испытание арматуры на растяжение: *а* — расположение опытного образца в испытательном стенде; *б* — опытный образец после испытания; *в* — общий вид диаграммы растяжения арматуры класса A-V

Рис. 19. Геометрические размеры и схема армирования ж/б испытываемой балки

4.3. Определение характеристик приведенного сечения

	Исходные данные:	
	высота сечения — $h =$	мм;
	ширина сечения — <i>b</i> =	мм;
	расстояние от нижней грани сечения до центра тяжести арм	атуры
4 _{sp}	$a_p - a_p =$	мм;
2 6	$\hat{\mathbf{b}}$	

плющадь поперечного сечения напрягаемой арматуры — $A_{g} = MM^2$; модуль упругости напрягаемой арматуры — $E_{g} = M\Pi a$. Соотношение модулей упругости арматуры и бетона:

$$\alpha_s = \frac{E_s}{E_b} =$$

Площадь приведенного сечения:

$$A_{red} = b \cdot h + d_{sp} \cdot A_{sp} = MM^2.$$

Статический момент площади приведенного сечения относительно растянутой грани

$$S_{red} = b \cdot \frac{h^2}{2} + d_{sp} \cdot A_{sp} \cdot a_p = MM^3.$$

Расстояние от центра тяжести приведенного сечения до растянутой грани:

$$y_o = \frac{S_{red}}{A_{red}} = MM.$$

Момент инерции приведенного сечения относительно центра тяжести:

$$I_{red} = b \cdot \frac{h^{3}}{12} + b \cdot h \cdot \left(y_{o} - \frac{h}{2}\right)^{3} + d_{sp} \cdot A_{sp} \cdot \left(y_{o} - a_{p}\right)^{3} = MM^{4}.$$

Момент сопротивления приведенного сечения относительно нижней грани:

$$W_{red} = \frac{I_{red}}{y_o} = MM^3.$$

Упруго пластический момент сопротивления относительно нижней грани:

$$W_{pl} = 1,75 \cdot W_{red} = MM^3.$$

Расстояние от центра тяжести приведенного сечения до ядровой точки:

$$r = \varphi \cdot \frac{W_{pl}}{A_{red}} =$$
MM.

4.4. Определение потерь предварительного напряжения

Первые потери:

потери от релаксации напряжений: $\sigma_1 = 0,03 \cdot \sigma_{sp} = M\Pi a$, где — $\sigma_{sp} = M\Pi a$ — начальное предварительное напряжение. Усилие предварительного обжатия с учетом первых потерь σ_i :

$$P_1 = A_{sp} \cdot (\sigma_{sp} - \sigma_{l}) = H.$$

Напряжение в бетоне на уровне центра тяжести арматуры А ":

$$\sigma_{sp} = \frac{P_1}{A_{red}} + P_1 \cdot \frac{y_o - a_p}{I_{red}} = M \Pi a.$$

Потери от быстро натекающей ползучести:

$$\sigma_b = 40 \cdot \frac{\sigma_{bp}}{R_{bp}} = \qquad \qquad \text{M} \Pi a \,.$$

Вторые потери:

потери от усадки бетона — $\sigma_8 = 50$ МПа;

потери от ползучести —
$$\sigma_9 = 150 \cdot \frac{\sigma_{bp}}{\overline{R}_{bp}} =$$
МПа.

Полные потери: $\sigma_{los} = \sigma_1 + \sigma_b + \sigma_8 + \sigma_9 = M \Pi a$. Усилие предварительного обжатия с учетом всех потерь:

$$P_2 = A_{sp} \cdot (\sigma_{sp} - \sigma_{los}) = H.$$

4.5. Определение теоретического момента трещинообразования

Эксцентриситет усилия предварительного обжатия относительно центра тяжести приведенного сечения:

$$lop = y_o - a_p = MM$$

Изгибающий момент усилия предварительного обжатия относительно оси, проходящей через верхнюю ядровую точку:

$$M_{rp} = P_2 \cdot (lop + r) =$$
 H·MM.

Теоретический момент образования трещин:

$$M_{crc} = \overline{R}_{bt} \cdot W_{pt} + M_{rp} =$$
 H·MM.

4.6. Определение теоретического разрушающего момента

Граничное значение относительной высоты сжатой зоны при $\sigma_{_{SR}} = R_{_{S}} + 400 - \sigma_{_{SR}} = M\Pi a$:

$$\xi_{R} = \frac{\omega}{1 400} \frac{\sigma \sigma_{SR}}{\sigma_{SC,u}} \left(1 - \frac{\omega}{1,1}\right) = 0$$

Высота сжатой зоны в стадии разрушения без учета коэффициента $\gamma_{\rm b6}$:

$$x = \overline{R}_{sp} \cdot \frac{A_{sp}}{\overline{R}_b \cdot b} = \text{MM}.$$

Относительная высота сжатой зоны:

$$\xi = \frac{x}{h_0} =$$

Коэффициент условий работы для высокопрочной арматуры:

$$\gamma_{\omega 6} = 1,15 - (1,15 - 1) \cdot (\frac{\xi}{\xi R - 1}) = <1,15.$$

.

Высота сжатой зоны в стадии разрушения с учетом коэффициента γ_{ss} :

$$x = \gamma_{s6} \cdot \overline{R}_{sp} \cdot \frac{A_{sp}}{\overline{R}_b \cdot b} = \qquad \text{MM}.$$

Теоретическое значение разрушающего момента:

$$M_{ub} = \overline{R}_b \cdot b \cdot x \cdot (h_o - \frac{x}{2}) =$$
 H·MM.

4.7. Определение теоретического перемещения середины пролета

Кривизна продольной оси балки, обусловленная перемещением от внешней нагрузки, отвечающей уровню загружения, при котором отсутствуют трещины, т.е. $0,8 \cdot M_{crr}$:

$$\frac{1}{r} = \frac{0.8 \cdot M_{crc,cal}}{0.85 \cdot E_b \cdot I_{red}} = 1/MM.$$

Теоретическое перемещение от внешней нагрузки:

$$f_{cal} = \frac{23}{216} \cdot \frac{1}{r} \cdot L_o^2 =$$
MM.

4.8. Схема нагружения балки

Нагрузка на балку прикладывается в двух точках (в третях пролета) с помощью жесткой траверсы, как это показано на рис. 20, a. Вертикальные перемещения опор и в середине пролета измеряются с помощью индикаторов часового типа. Деформации сжатой и растянутой граней балки в зоне чистого изгиба (рис. 20, δ) измеряются с помощью механических тензометров.

Рис. 20. Схема загружения балки и размещения измерительных приборов (а) и эпюра изгибающих моментов (б)

Вес загрузочных устройств (траверсы и т.д.) — P = KH. Собственный вес балки — $q = b \cdot h \cdot 25 = KH$.

Нагрузка, соответствующая теоретическому моменту трещино-образования:

$$F_{crc,cal} = 3 \cdot \frac{M_{crc,cal}}{L_o} - 3 \cdot q \cdot \frac{L_o}{8} - 0, 5 \cdot P = \kappa H.$$

Нагрузка, соответствующая теоретическому разрушающему моменту:

$$F_{ul,cal} = \frac{3 \cdot M_{ul,cal}}{L_o} - 3 \cdot q \cdot \frac{L_o}{8} - 0, 5 \cdot P = \kappa H.$$

4.9. Результаты испытания балки

Испытание балки производится в режиме анимации. Для увеличения нагрузки необходимо нажимать на клавишу "Enter". При этом на дисплее будет демонстрироваться для каждого этапа нагрузки: поведение балки под нагрузкой, эпюра деформаций соответственно по сжатой и растянутой зонам; эпюра нормальных напряжений в бетоне и арматуре; график развития изгибающего момента и прогиба в среднем сечении балки.

После того как достигнута разрушающая нагрузка необходимо построить график зависимости момента от прогиба конструкции на рис. 21, на котором необходимо отметить теоретические и опытные значения моментов соответствующих трещинообразованию и разрушению, и зарисовать схему разрушения балки на рис. 22.

Рис. 21. График зависимости прогиба балки от изгибающего момента

Рис. 22. Карта трещин и схема разрушения

4.10. Сопоставление теоретических и экспериментальных значений

Опытный момент трещинообразования:

$$M_{crc,exp} = (F_{crc,exp} + 0.5 \cdot P) \cdot \frac{L_o}{3} + g \cdot L_o \cdot \frac{L}{8} = \kappa H \cdot M.$$

Величина отклонения в %:

$$\frac{(M_{crc,cal} - M_{crc,exp})}{M_{crc,cal}} \cdot 100\% = \%.$$

Опытный разрушающий момент:

$$M_{ul,\exp} = (F_{ul,\exp} + 0.5 \cdot P) \cdot \frac{L_o}{3} + g \cdot L_o \cdot \frac{L_o}{8} = \kappa H \cdot M.$$

Величина отклонения в %:

$$\frac{(M_{ul,cal} - M_{ul,exp})}{M_{ul,cal}} \cdot 100\% = \%$$

Теоретическое перемещение — $f_{cal=}$ мм. Экспериментальное перемещение — $f_{exp=}$ мм. Величина отклонения:

$$\frac{(f_{cal} - f_{exp})}{f_{cal}} \cdot 100\% = \%.$$

ЛИТЕРАТУРА

Основная

1. Сазыкин И.А. Строительные конструкции: Уч. пос. Ч. 1: Железобетонные конструкции. — М.: МИИТ, 2009. — 65 с.

Дополнительная

2. Трекин Н.Н., Кулакова Н.А. Железобетонные каменные конструкции: Уч. пос. — М.: РГОТУПС, 2004. — 83 с.

3. Сазыкин И.А. Архитектура и строительные конструкции: Уч. пос. Ч. 1: Железобетонные конструкции. — М.: РГОТУПС, 2003. — 66 с.

4. Проектирование железобетонных, каменных и армокаменных конструкций: Уч. пос. / А.К. Фролов и др. — М.: АСВ, 2002. — 170 с.

ЖЕЛЕЗОБЕТОННЫЕ И КАМЕННЫЕ КОНСТРУКЦИИ

Методические указания к выполнению лабораторных работ на ЭВМ

Компьютерная верстка Н.Ф. Цыганова

Тип. зак.		Тираж 200 экз.
Подписано в печать 30.03.12	Гарнитура Times	Ризография
Усл. печ. л. 2,25		Формат 60×90 ¹ / ₁₆

Редакционный отдел Информационно-методического управления РОАТ, 125993, Москва, Часовая ул., 22/2

Участок оперативной печати Информационно-методического управления РОАТ, 125993, Москва, Часовая ул., 22/2