ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

19/9/11

Одобрено кафедрой «Железнодорожная автоматика, телемеханика и связь»

СПЕЦИАЛЬНЫЕ ИЗМЕРЕНИЯ И ТЕХНИЧЕСКАЯ ДИАГНОСТИКА УСТРОЙСТВ ЖЕЛЕЗНОДОРОЖНОЙ АВТОМАТИКИ, ТЕЛЕМЕХАНИКИ И СВЯЗИ

Методические указания к лабораторной работе № 1 для студентов V курса

специальности

190402.65 АВТОМАТИКА, ТЕЛЕМЕХАНИКА И СВЯЗЬ НА ЖЕЛЕЗНОДОРОЖНОМ ТРАНСПОРТЕ

специализации

АВТОМАТИКА И ТЕЛЕМЕХАНИКА НА ЖЕЛЕЗНОДОРОЖНОМ ТРАНСПОРТЕ

2-е издание

Москва – 2012

Составители:д-р техн. наук, проф. И.Е. Дмитренко, инж. С.А. Березин

Рецензент — д-р техн. наук, проф. В.М. Алексеев

СПЕЦИАЛЬНЫЕ ИЗМЕРЕНИЯ И ТЕХНИЧЕСКАЯ ДИАГНОСТИКА УСТРОЙСТВ ЖЕЛЕЗНОДОРОЖНОЙ АВТОМАТИКИ, ТЕЛЕМЕХАНИКИ И СВЯЗИ

Методические указания на лабораторную работу № 1

Гип. зак. Подписано в печать 23.03.12 Усл. печ. л. 1,5	Гарнитура Times	Тираж 100 экз. Ризография Формат 60×90¹/ ₁
--	-----------------	---

Компьютерная верстка Н.Ф. Цыганова

Редактор Г.В. Тимченко

Редакционный отдел Информационно-методического управления РОАТ, 125993, Москва, Часовая ул., 22/2

Участок оперативной печати Информационно-методического управления РОАТ, 125993, Москва, Часовая ул., 22/2

© Московский государственный университет путей сообщения, 2012

Лабораторная работа № 1

ИЗМЕРЕНИЕ ПАРАМЕТРОВ БЛОКОВ ЭЛЕКТРИЧЕСКОЙ ЦЕНТРАЛИЗАЦИИ СИСТЕМОЙ «ТЕСТ»

Методические указания

При регулировании вновь вводимых в эксплуатацию устройств автоматики и телемеханики, при текущей эксплуатации устройств используется типовые стенды. Измерения на стендах проводится путем коммутации входных сигналов, подаваемых на объект контроля путем мнимых переключателей — коммутаторов. Переключение цепей контроля проводятся вручную, при этом затрачивается значительное время, и не исключены ошибки электротехника.

Значительно повысить точность измерений, сократить время измерительного процесса позволяет использование автоматизированной системы «TECT».

Проверка аппаратуры СЦБ системой осуществляется по определенной программе, занесенной в памяти ЭВМ для каждого из блоков ЭЦ или других приборов. Затем проходит автоматическое сравнение полученных параметров с номинальными, ранее записанными в блоке памяти ЭВМ. В результате чего устройства отображения фиксируют: «Параметр в норме», «Параметр вне нормы». Этот процесс осуществляется автоматически, при сравнительно небольшом времени измерения. Так например при проверке любого из блоков аппаратуры ЭЦ затрачивается не более 5 мин.

Проверка блоков в системе производится автоматически по программе в следующих режимах:

проверка исправности монтажа;

 измерение временных и электрических параметров блоков ЭЦ;

— измерение сопротивлений электрических цепей блоков.

Программное обеспечение (ПО) компьютера использует процессор Pentium II с частотой не менее 450 МГц (или

Pentium III) с оперативной памятью 64 Мб (оптимальная 128 Мб) наличием свободного пространства на жестком диске не менее 30 Мб и наличием принтера и бесперебойного источника питания.

Программное обеспечение имеет защиту от несанкционированного доступа и хранение результатов измерения.

Ввод измерительной информации от объекта контроля (ОК) в ЭВМ осуществляется программно.

При функционировании системы используются номинальные данные, сравнение их с текущими при известных допусках.

Программное обеспечение формирует команды проверки и адреса проверяемого параметра.

Кроме того в системе переключения команд — многоканальный коммутатор, а также, преобразователь аналоговых величин в цифровой код.

Система «ТЕСТ» объединяет ЭВМ, схемы измерения параметров и схемы управления измерительным процессом.

Таким образом в системе, через определенные отрезки времени, происходит поочередное подключение АЦП ко всем цепям объекта контроля — АПЦ. Пуском АЦП управляет ЭВМ.

Кроме параметров блоков ЭЦ системой можно измерить параметры реле РЭЛ, НМШ, НМПШ, ДСШ, КПТ, БКПТ и др.

Система обеспечивает воспроизведение и измерение:

— напряжения постоянного тока в диапазоне от 0,01 В до 44 В;

- напряжения тока от 0,01 А до 0,999 А;
- напряжения переменного тока от 0,01 до 22 В частотой 50 Гц;
- сила переменного тока в диапазоне 0,001 А до 0,999 А частотой 50 Гц.

2. Содержание отчета:

1. Привести структурную схему измерительной системы, основные ее характеристики.

2. По результатам измерений провести запись параметров, не соответствующих нормативным данным, отметить причины таких отклонений от нормы в следующем виде:

№ п/п	Параметр, вышедший из нормы	Причина неисправности
1		
2		

3. Контрольные вопросы:

1. Объясните принцип работы АЦП и его применение в измерительном процессе.

2. Как осуществляется выбор типа блока ЭЦ при проверке его исправности?

3. Как осуществляется проверка исправности системы «ТЕСТ», назначение 24-х канального осциллографа?

4. Как определяется исправность электрической цепи в диаг-ностируемом блоке ЭЦ в системе «TECT»?

5. Как осуществляется подстройка системы при измерении временных параметров реле блоков ЭЦ?

ЭЛЕМЕНТЫ УПРАВЛЕНИЯ ПРОГРАММОЙ

1. Визуальные элементы управления главного окна

После загрузки главное окно программы имеет следующий вид (рис. 1):

Рис. 1

1а — включение/выключение измерительного блока; **16** — переключатель стартера. Стартер обеспечивает надежное включение измерительного блока; **1в** — вызов окна подробных сведений при проверке монтажа; **1г** — редактирование базы данных по регулировщикам; **1д** — редактирование базы данных по приемщикам; **1е** — просмотр баз данных с результатами проверки монтажа блоков; **1ж** — просмотр баз данных с результатами проверки параметров реле блоков; **13** — калибровка системы; **1и** — справка о программе; **1к** — печать результатов; **1л** — редактирование нормативной базы данных; **1м** — включение/выключение измерительного блока

Для начала работы с программой необходимо при помощи кнопки **1a** включить измерительный блок. Задействование стартера (**16**) помогает запустить блок, если он не успевает включиться (светодиод включается и тут же гаснет).

Кнопка **13** позволяет открыть окно калибровки измерительного блока. При этом измерительный блок должен быть включен.

Внимание! Калибровку должен проводить только опытный специалист. Неправильная калибровка системы приведет к выдаче неверных результатов при проверке параметров реле.

Кнопка **1л** позволяет отредактировать базу данных с нормативными параметрами реле. База данных защищена паролем во избежание несанкционированного изменения нормативов.

После включения измерительного блока главное окно программы имеет вид (рис. 2.):

Рис. 2

2а — кнопка выбора режима проверки исправности монтажа; **2б** — кнопка выбора режима проверки параметров реле; **2в** — кнопка выбора режима проверки активных сопротивлений; **2г** — поле ввода регулировщика; **2д** — поле ввода приемщика; **2е** — поле ввода номера блока; **2ж** — поле ввода года выпуска блока; **23** — панель выбора исполнительной группы (блоки ЭЦ) для проверки; **2и** — панель выбора наборной группы или блоков ГАЦ для проверки Для перехода в режим проверки исправности монтажа необходимо нажать кнопку **2а**. При нажатии кнопки **26** программа переходит в режим проверки параметров реле в блоках, при нажатии на кнопку **2в** — в режим проверки активных сопротивлений.

Перед началом проверки необходимо заполнить поле ввода регулировщика **2**г, поле ввода приемщика **2**д, поле ввода номера проверяемого блока **2**е и поле ввода года выпуска блока **2**ж.

Далее необходимо перейти в режим выбора блока и параметров проверки нажатием на соответствующей панели (23 — если проверяемый блок относится к исполнительной группе, **3и** — если проверяемый блок относится к наборной группе или блокам ГАЦ).

2. Описание элементов управления в режиме проверки исправности монтажа блоков

2.1. До начала проверки

После выбора блоков исполнительной группы главное окно примет вид (рис. 3):

Тип блока: ВІ	Старт	Далее	Стоп
ВІ	▶ 3в		в Зд
ВІІ ВІІІ-65 ВД-62 ВХ За МІ МІІ МІІІ <u>▼</u>		36	

Рис. 3

3a — поле выбора блока для проверки; 36 — поле отображения информации; 3B — кнопка запуска процесса проверки выбранного блока. Эта кнопка активна только в том случае, если данные по блоку (номер блока и год выпуска), а также выбраны фамилии приемщиков и регулировщиков. После нажатия этой кнопки начнется проверка исправности монтажа указанного блока; 3r — кнопка продолжения работы после окончания процесса проверки. Если проверка завершилась или была прервана, становится активной данная кнопка. После ее нажатия программа переходит в исходное состояние; **3**д — кнопка принудительного прекращения процесса проверки. Если по каким-то причинам необходимо прервать процесс проверки, это можно сделать посредством нажатия на данную кнопку. В зависимости от выполняемой операции, по истечении некоторого времени (до нескольких секунд) система прекратит проверку.

2.2. Во время проверки

После нажатия на кнопку старт панель проверки изменит свой вид (рис. 4):

4а — количество пройденных операций/общее количество операций; 46 — количество пройденных действий в текущей операции/общее количество действий в текущей операции; 4в — общее количество пройденных действий/общее количество действий

2.3. В конце проверки

Если в результате проверки исправности монтажа блока окажется, что монтаж блока неисправен (рис. 5), то программа остановит проверку, и панель будет иметь следующий вид:

Тип блока: <mark>ВІ</mark> ВІ	Старт	Далее ш	Стоп			
ВІІ ВІІІ-65 ВД-62 ВХ	Ход проверки Операция: Действие в операции: Пройдено действий:	2/4 6/7 19/42				
MI MII MIII	монт	МОНТАЖ НЕИСПРАВЕН 5				

Рис. 5

В противном случае панель примет вид (рис. 6):

Тип блока: ВІ	Старт	Далее	Стоп	
BI 🖻			×	
BII	Ход проверки			
BIII-65	Операция:	4/4		
ВЛ-62	Действие в операции:	12/12		
BX	Пройдено действий:	42/42		
	МОНТАЖ ИСПРАВЕН			

Рис. 6

5, 6 — поля с указанием состояния релейного блока

Внимание! Для продолжения проверок необходимо обязательно нажать на кнопку "Далее".

Для вывода подробных сведений о состоянии цепей и реле в блоке при проверке исправности монтажа необходимо нажать на кнопку **1в** рис. 1 главного окна.

Окно подробных сведений имеет вид (рис. 7):

🜒 Подробные сведения	×
Список операции:	
-110 112 222 0 203 -117 0 209 -111 0 0	C
-110 112 222 201 203 -117 -210 209 -111 -206 0 78	мс 🤳
-110 0 0 201 203 -117 -210 209 -111 -206 220	-
-110 0 0 201 203 -117 -210 209 0 -206 220	JIC 🗸
-110 0 0 201 203 -117 -210 209 0 -206 220	0
-110 0 0 201 -217 -117 -210 209 0 -206 220	
209 -111 201 -206 114 -110 215 0 0 0 0	ſ
209 -111 201 -206 114 215 -110 -208 112 -117 0	<u> </u>
Потенциалы на стороне 1: минус плюс ноль	76
M	← 7
M 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 7 18 19 20 21 22	1
Потенциалы на стороне 2:	
M 1 2 4 5 5 7 8 7 10 11 2 3 4 15 16 7 18 5 2 2 2	← 7
M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	44
Попытка: 1	

Рис. 7

7а — список подаваемых полюсов; 7б — панель отображения состояние реле (что должно быть); 7в — вид потенциалов на разных полюсах

первой стороны; M — обозначает то, что должно быть по модели, а M — обозначает то, что измерено на контактах колодки блока первой стороны; 7r — вид потенциалов на разных полюсах второй стороны. M — обозначает то, что должно быть по модели, а M — обозначает то, что измерено на контактах колодки блока первой стороны

3. Управление в режиме проверки параметров реле в блоках

Для перехода в режим проверки параметров реле в блоках необходимо нажать на кнопку **26** рис. 2. После этого необходимо щелкнуть по панели **23** или **2и** рис. 2, в зависимости от того к какой группе относится проверяемый блок.

После щелчка на панели 23 она станет иметь вид (рис. 8):

Рис. 8

8a — поле выбора блока; **86** — список проверки реле в выбранном блоке; **8**в — типы реле, соответствующие реле в блоке; **8**г — кнопка запуска процесса проверки выбранных реле. Эта кнопка активна только в том случае, если выбраны реле для проверки. После нажатия этой кнопки начнется проверка указанных параметров выбранных реле; **8**д — кнопка продолжения работы после окончания процесса проверки. Если проверка завершилась или была прервана, становится активной данная кнопка. После ее нажатия программа переходит в исходное состояние; **8**е — кнопка принудительного прекращения процесса проверки. Если по каким-то причинам необходимо прервать процесс проверки, это можно сделать посредством нажатия на данную кнопку. В зависимости от выполняемой операции, по истечении некоторого времени (до нескольких секунд) система прекратит проверку; **8ж** — вызова окна взаимозамены выбранного типа реле; **83** — кнопки выбора типа проверяемых параметров. Ели нажата Uпр — будет проверяться напряжение срабатывания и напряжение переброса (только у поляризованных или комбинированных реле), Uотп — напряжение отпускания, Тотп — время отпускания; **8и** — кнопка вызова таблицы результатов проверки реле на экран; **8к** — кнопка вызова окна Осциллографа на экран; **8л** — кнопка выбора измерения полного либо прямого подъема у реле

Окно осциллографа имеет вид (рис. 9):

Рис. 9

9a — поле вывода информации о блоке и о проверяемом реле; 96 — поле отображений графика измерительного процесса; 9B — кнопка закрытия окна Осциллографа; 9r — кнопка очистки окна осциллографа

Таблица результатов измерений параметров имеет следующий вид:

Результатых п	оследней провер	рки параметров	реле в рел	ейных блоках	t in the second s				×	
Enou		Ho	мер блока							
БЛОК		Го	д выпуска							
Регулиров	щик	При	емщик							
		Подъем	Іодъем, В (А*) Отпа		Отпадание, В (А*) Вреи		ремя отпадания, с		Сопр. обмотки, Ом	
Реле	Тип реле	Измерено	Номинал	Измерено	Номинал	Измерено	Номинал	Измерено	Номинал	
	10a						1	10б ↓	10в ↓	
🔒 Сохрани	, ть результаты в	базе данных	Дата	Врем	я			Очистить 🔀	Закрыть	

Рис. 10

10а — кнопка записи результатов проверки, находящихся в этой таблице, в базу данных; **106** — очистка полей данной таблицы результатов; **10в** — закрытие данной таблицы результатов

Параметры неисправных реле отображаются красным цветом.

4. Описание элементов управления в режиме проверки активных сопротивлений в блоках

После выбора режима проверки активных сопротивлений в блоках главное окно программы будет иметь вид (рис. 11):

Рис. 11

11а — список блоков для проверки активных сопротивлений; 11б — список проверяемых активных сопротивлений, и их номинал; 11в — поле вывода результата проверки

5. Печать результатов проверки блоков

Для печати результатов проверенных реле необходимо нажать кнопку **1к** рис. 1. На экране появится окно (рис. 12):

12а — таблица отображения измеренных параметров реле, подлежащих печати; **126** — таблица отображения данных посланных на печать; **12в** — кнопка посылки данных об одном выбранном реле в базу данных для печати; **12г** — кнопка посылки данных обо всех реле выбранного блока в базу данных для печати; **12г** — кнопка посылки данных обо всех реле выбранного блока в базу данных для печати; **12д** — поле ввода типа блока для поиска; **12е** — поле ввода типа блока для поиска; **12е** — поле ввода даты для поиска; **12ж** — кнопка сортировки; **123** — кнопка сброса сортировки; **12и** — кнопки передвижения по таблице измеренных параметров реле, подлежащих печати; **12к** — кнопки передвижения по таблице данных посланных на печать; **12л** — кнопка вывода данных на принтер; **12м** — кнопка просмотра данных перед печатью; **12н** — кнопка выхода из программы печати

ПРОГРАММА АППАРАТНОГО ТЕСТИРОВАНИЯ БЛОКОВ АСК «Тест» 1. ВВЕДЕНИЕ

Данное программное обеспечение предназначено для выявления технических неисправностей аппаратуры. Оно позволяет выдавать любые заданные формы напряжений на каналы, изменять их амплитуду и скорость нарастания (для пилообразного напряжения), а также имеет некоторые дополнительные функции. Для индикации реальных сигналов, которые присутствуют на управляющих выходах системы ACK «Тест», используется 24-х канальный осциллограф. Выдача и измерение напряжений осуществляется в реальном масштабе времени, что позволяет оператору более точно определить состояние устройства.

2. ОПИСАНИЕ УПРАВЛЯЮЩИХ ЭЛЕМЕНТОВ ПРОГРАММЫ

2.1. Элементы главной формы приложения

При запуске программы на экране появляется главная форма приложения (рис. 13).

Перечень управляющих элементов:

1 — максимальные значения напряжений. Так как данная программа не предназначена для точных измерений, то истинные их значения могут отличаться от вышеуказанного. Это справедливо и для остальных значений напряжений, выводимых на экран. Кнопка применима к выбранному номеру блока (см. элемент № 9, 10);

2 — многоканальный осциллограф. Красным цветом выводится напряжение после резисторов, а зеленым — до резисторов (о чем речь — см. описание элемента № 16). Применим к выбранному номеру блока и платы (см. элемент № 9, 10);

3 — приблизительное значение напряжения до резистора. Применимо к выбранному номеру блока и платы (см. элемент № 9, 10);

4 — приблизительное значение напряжения после резистора. Применимо к выбранному номеру блока и платы (см. элемент № 9, 10);

5 — приблизительная величина тока в канале. Применимо к выбранному номеру блока и платы (см. элемент № 9, 10);

6 — кнопка открытия формы регулировки амплитуд; предоставляет возможность управлять амплитудой выходных сигналов. Применима к выбранному номеру блока (см. элемент № 9, 10);

7 — кнопка открытия формы для управления параметрами пилообразного напряжения. Применима к выбранному номеру блока (см. элемент № 9, 10);

8 — кнопка запуск/останов пилообразного напряжения. Применима к выбранному номеру блока (см. элемент № 9, 10);

9, 10 — кнопки выбора плат внутри первого и второго блока соответственно. Каждый блок системы имеет возможность установки в него до шести плат типа N1. Каждая из этих плат имеет 24 универсальных канала для управления и (или) измерения. Эти кнопки позволяют обратиться к любой из шести плат первого или второго блоков. Все посылаемые программой команды применяются только для выбранного

блока (верхний или нижний ряд кнопок) и выбранной платы (уточните у производителя сколько плат N1 задействовано в данной конфигурации системы);

11 — место, где показывается отклик системы на действия оператора;

12 — кнопка включения питания. Применима к выбранному номеру блока (см. элемент № 9, 10). После того, как надпись «Сеть» выделится красным цветом, разрешается производить остальные действия над системой. Надпись «Сеть» выделяется красным цветом спустя некоторое время после нажатия даже в случае, если блок не включится (не включен шнур питания в розетку и т.п.). Блок в выключенном состоянии команды не воспринимает и программа работает в демонстрационном режиме;

13 — сброс блока; переводит выбранный блок в исходное состояние;

14 — в случае нажатия, система производит непрерывные измерения значений напряжений и вывод их на экран для всех каналов выбранного блока. При этом все изменения параметров напряжений (амплитуда, скорость и т.п.) станут наглядно видны оператору;

15 — при нажатии на кнопку будет произведено сканирование всех каналов и вывод полученных значений на экран. Применима к выбранному номеру блока и платы (см. элемент № 9, 10);

16 — выбор места измерения напряжения. Последовательно с каждым каналом включен шутовой резистор. По величине падения напряжения на нем можно судить о токе, протекающем через канал. При выборе опции **«до резисторов»**, будет измеряться напряжение непосредственно после выходных силовых транзисторов канала и показываться на экране зеленым цветом. При выборе опции **«после»** (рекомендуемый режим), будет измеряться напряжение на выходе самого блока, т.е. на тех выводах, к которым непосредственно подключаются блоки и/или реле (вывод на экран красным цветом). При выборе опции **«до и после»**, будут задействованы оба вышеуказанных режима и станет возможным определение протекающего по каналу тока. Кнопка применима к выбранному номеру блока и платы (см. элемент № 9, 10).

17 — панель дополнительных возможностей. Применима к выбранному номеру блока и платы (см. элемент № 9,10). Активация опции «**ВКЛ.один канал**» позволяет закрывать все остальные каналы платы кроме того, который был открыт только что. Активация опции «**Измерять сразу**» производит измерения непосредственно после открытия канала. При включенной опции «**Изм.один раз**» измерение напряжения на каждом из каналов будет произведено один раз (вместо тридцати при отключенной опции) и выведено на экран в виде прямой линии. Панель применима к выбранному номеру блока и платы (см. элемент № 9, 10).

18 — кнопки форм напряжений сверху вниз соответственно: пилообразное напряжение положительной полярности, пилообразное напряжение отрицательной полярности, синусоидальное напряжение частотой 50 Гц прямой фазы, синусоидальное напряжение частотой 50 Гц противоположной фазы (сдвиг 180°), постоянное положительное напряжение типа «меандр» положительное напряжение, напряжение типа «меандр» положительной полярности, напряжение типа «меандр» отрицательной полярности. При наведении и нажатии левой кнопки мыши откроется заданный канал (напряжение на открытом канале появится только после того, как напряжения были выставлены элементом № 19). При нажатии правой кнопкой мыши, произойдет одновременное проключение выбранной формы напряжения по всем каналам выбранной платы и номера блока.

19 — кнопка «Выставить напряжения». Применима к выбранному номеру блока (см. элемент № 9, 10). Осуществляет установку параметров выходных напряжений без открытия каналов. Т.е. напряжения с заданными после нажатия кнопки параметрами (амплитуда, скорость нарастания, направление изменения и т.д.) только тогда поступят на выход блока, когда будет открыт соответствующий канал (см. элемент № 18). Параметры всех восьми возможных форм напряжений устанавливаются одновременно.

20 — автозапуск. Применим к выбранному номеру блока (см. элемент № 9, 10). Осуществляет пакетную подачу импульсов включения питания на выбранный блок. Используется для систем с импульсным источником питания. Рекомендуемое состояние «Включено». Не рекомендуется применять с трансформаторными источниками питания. Подавляющее большинство систем АСК Тест имеет встроенный управляемый импульсный источник питания.

2.2. Форма управления амплитудами сигналов

Предназначена для регулирования амплитуды каждой из восьми возможных форм напряжений и становится активной при нажатии кнопки № 20 (рис. 13). Внешний вид представлен на рис. 14.

Установка амплитуд

Рис. 14

На форме находятся следующие управляющие элементы № 21–28. Все они позволяют регулировать амплитуды напряжений соответствующих форм. Правее каждого из них выводится примерное значение этой амплитуды. Ее изменение происходит сразу же при перемещении указателя.

2.3. Форма управления параметрами пилообразного напряжения

Становится активной при нажатии кнопки № 7. Внешний вид представлен на рис. 15.

Рис. 15. Управляющие элементы:

29 — позволяет менять скорость роста или убывания пилообразного напряжения. Скорость может изменяться в пределах от 0 до 255 (элемент № 4); 30 — устанавливает начальное значение пилообразного напряжения. Именно от этой величины напряжение будет плавно увеличиваться или уменьшаться; 31 — позволяет задавать направление изменения напряжения. В зависимости от выбранного направления, напряжение будет увеличиваться или уменьшаться по модулю от начального значения; 32, 33 — значения соответствующих величин; 34 — кнопка закрытия формы

ПОРЯДОК ПРОВЕРКИ РАБОТОСПОСОБНОСТИ СИСТЕМЫ

Система диагностики АСК «ТЕСТ» представлена на рис. 16.

Рис. 16

1 — дисплей; 2 — звуковая колонка; 3 — принтер; 4 — клавиатура ПК; 5 — манипулятор «мышь»; 6 — источник бесперебойного питания UPS; 7 — блок АСК «Тест»; 8 — розетки силового питания 220В; 9 — кнопка «Сброс»; 10 — проверяемые релейные блоки; 11 — системный блок ПК

Работа на аппаратуре АСК «ТЕСТ» начинается с проверки работоспособности. Для этого необходимо:

1. Визуально убедится в комплектности аппаратуры и её правильном подключении (рис. 16).

2. Убедится в том, что интерфейсная плата установлена без смещения в разъем системного блока персонального компьютера.

3. Проверить наличие напряжения питания в силовой сети.

4. Убедится в наличии единого заземления корпусов ПК и ACK «ТЕСТ».

5. Включить персональный компьютер.

6. Нажать кнопку «Сброс» системы АСК «ТЕСТ» (рис. 16-9).

7. Убедиться в успешной загрузке операционной системы.

8. Перед началом тестирования отключить от системы все провода, идущие к блокам и реле!

9. С помощью манипулятора мышь навести курсор на иконку, запускающую программное обеспечение аппаратуры ACK «TECT»" и запустить его.

10. Убедится в успешной загрузке программного обеспечения (дождаться появления на экране компьютера изображения рис. 13).

11. Выбрать номер платы и блока (элементы № 9, 10).

12. При использовании трансформаторного источника питания блоков отключить автозапуск (№ 20).

13. Включить непрерывные измерения (№ 14).

14. Включить питание (№ 12). После этого на всех каналах должно выставиться нулевое напряжение.

15. Выставить напряжение (№ 19).

16. Нажатием левой кнопки мыши выставить положительное напряжение на любом одном канале (\mathbb{N} 18). Это напряжение должно немедленно отобразиться на экране осциллографа (\mathbb{N} 2). В некоторых модификациях системы каналы \mathbb{N} 23 и \mathbb{N} 24 отсутствуют и там всегда будет нулевой уровень напряжения.

17. Аналогично п. 7 выставить отрицательное напряжение на любом одном канале (№ 18).

18. Нажатием правой кнопки мыши включить положительное напряжение на всех каналах платы (\mathbb{N} 18) и проконтролировать его осциллографом (\mathbb{N} 2).

19. Нажатием правой кнопки мыши включить отрицательное напряжение на всех каналах платы (\mathbb{N} 18) и проконтролировать его осциллографом (\mathbb{N} 2).

20. Включить измерения напряжений до и после резисторов (№ 30) и удостовериться в приблизительном равенстве напряжений.

21. Выполнить п. 9 и удостовериться в приблизительном равенстве напряжений.

22. Включить измерения напряжений после резисторов (№ 16).

23. Проверить присутствие напряжений всех форм на всех каналах платы.

24. Проверить возможность изменения амплитуд напряжений (№ 6).

25. Проверить возможность изменения параметров пилообразного напряжения (№ 7).

26. Повторить пункты № 7–14 для другой платы блока.

27. После этого выбрать одну из плат второго блока и повторить п. № 1–17.

28. Завершив проверку, необходимо произвести программный сброс первого и второго блока (№ 9, 10, 13).

29. Подключить к системе провода, идущие к блокам и реле. Теперь аппаратура готова к работе.

Содержание отчета:

1. Привести структурную схему измерительной системы, основные ее характеристики.

2. По результатам измерений провести запись параметров, не соответствующих нармативным данным, отметить причины таких отключений от нормы.

Контрольные вопросы

1. Объясните принцип работы АЦП и его применение в измерительном процессе.

2. Как осуществляется выбор типа блока ЭЦ при проверке его исправности.

3. Как осуществляется проверка исправности системы «Тест», назначение 24-х канального осциллографа.

4. Как определяется исправность электрической цепи в диагностируемом блоке ЭЦ в системе «Тест».

5. Как осуществляется подстройка системы при измерении временных параметров реле блоков ЭЦ.

6. Сколько измерительных каналов соответствует одному выходному каналу АСК «Тест»:

а) – 1; б) – 2; в) – 3; г) – 16.