РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИНИСТЕРСТВА ПУТЕЙ СООБЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

19/6/2

Одобрено кафедрой «Автомитика и телемеханика на железнодорожном транспорте» Утверждено деканом факультета «Управление процессами перевозок»

ЭКСПЛУАТАЦИОННЫЕ ОСНОВЫ АВТОМАТИКИ И ТЕЛЕМЕХАНИКИ

Рабочая программа для студентов V курса

специальности

210700 АВТОМАТИКА, ТЕЛЕМЕХАНИКА И СВЯЗЬ НА ЖЕЛЕЗНОДОРОЖНОМ ТРАНСПОРТЕ (АТС)

специализации

210701 АВТОМАТИКА И ТЕЛЕМЕХАНИКА НА ЖЕЛЕЗНОДОРОЖНОМ ТРАНСПОРТЕ (АТ)

Составители: К.В. МЕНАКЕР, П.В. САВЧЕНКО

ЭКСПЛУАТАЦИОННЫЕ ОСНОВЫ АВТОМАТИКИ И ТЕЛЕМЕХАНИКИ

Рабочая программа

Редактор *Д.Н. Тихонычев* Компьютерная верстка *Ю.А. Варламова*

Тип. зак.	Изд. зак. 230	Тираж 500 экз.
Подписано в печать 19.02.04	Гарнитура Times.	Офсет
Усл. печ. л.		Формат $60 \times 90^{1}/_{16}$

Издательский центр РГОТУПСа, 125993, Москва, Часовая ул., 22/2

Типография РГОТУПСа, 125993, Москва, Часовая ул., 22/2

© Российский государственный открытый технический университет путей сообщения Министерства путей сообщения Российской Федерации, 2004

1. ЦЕЛЬ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

На железнодорожном транспорте широко используются устройства автоматики и телемеханики. Их применение позволяет существенно повысить безопасность движения поездов, облегчить условия труда железнодорожников, способствует улучшению показателей эксплуатационной работы железнодорожного транспорта.

Улучшение технико-эксплуатационных показателей достигается лишь при условии грамотного применения устройств автоматики и телемеханики, когда заложенные в них возможности совершенствования технологии работы станций, узлов и участков с учетом их конкретных особенностей реализуются в наибольшей степени.

Целью дисциплины является изучение методов получения наибольшего технико-экономического эффекта от использования существующих и создаваемых систем железнодорожной автоматики и телемеханики на основе освоения технологии работы железных дорог и организации управления перевозочным процессом при безусловном обеспечении безопасности движения поездов.

Цель преподавания дисциплины состоит в подготовке специалистов, владеющих навыками анализа работы перегонных и станционных систем железнодорожной автоматики и телемеханики в зависимости от интенсивности поездной и маневровой работы; навыками по расчету экономической эффективности устройств.

Материал, излагаемый в данной дисциплине, основывается на изучении технологии работы станций, узлов и участков железных дорог, организации управления перевозочным процессом, методов наиболее эффективного применения существующих и вновь разрабатываемых систем железнодорожной автоматики и телемеханики.

2. ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯДИСЦИПЛИНЫ

Изучив дисциплину, студент должен

2.1. Иметь представление:

о перспективных направлениях дальнейшего развития и совершенствования систем автоматики и телемеханики, основанных на знании потребностей технологии перевозочного процесса.

2.2. Знать:

- технологию работы железных дорог;
- организацию управления перевозочным процессом;
- основы построения и проектирования безопасных систем станционной автоматики с учетом перевозочного процесса;
- роль устройств железнодорожной автоматики и телемеханики в обеспечении безопасности движения поездов, в пропускной способности перегонов и станций, в перерабатывающей способности сортировочных горок;
- эксплуатационно-технические требования к системам железнодорожной автоматики;
- методы повышения пропускной и провозной способности железных дорог.

2.3. Уметь:

- с максимальной эффективностью использовать существующие системы железнодорожной автоматики и телемеханики;
- осуществлять выбор систем, наилучшим образом соответствующие характеристикам участка, станции или сортировочной горки;
 - обосновать способ управления объектами централизации;
 - установить численность оперативного персонала;
- определить экономическую эффективность внедряемых устройств.

2.4. Иметь опыт:

• расстановки светофоров, изолирующих стыков и другого оборудования.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Вид учебной работы	Всего часов	Курс V
Общая трудоемкость дисциплины	84	
Аудиторные занятия:	12	
Лекции	8	
Практические занятия	4	
Самостоятельная работа	57	
Контрольная работа	15	1
Вид итогового контроля		Зачет с оценкой

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Разделы дисциплины и виды занятий

№ п/п	Раздел дисциплины	Лекции, ч	Практические занятия, ч
1	Введение	0,5	
2	Тяговые расчеты 3,5 2		2
3	Эксплуатационные основы перегонных систем железнодорожной автоматики и телемеханики	4	2
4	Эксплуатационные основы станционных систем железнодорожной автоматики и телемеханики		
5	Эксплуатационные основы применения устройств заградительной сигнализации		
6	Эксплуатационные основы применения систем диспетчерской централизации. Центры диспетчерского управления		
7	Эксплуатационные основы автоматизации и механизации на сортировочных станциях		
8	Технико-экономическая эффектив- ность систем железнодорожной автоматики и телемеханики		

4.2. Содержание разделов дисциплины

Разлел 1

Введение

- 1.1. Устройства автоматики и телемеханики на железных дорогах, их назначение и роль в обеспечении безопасности движения [1, с. 3].
- 1.2. Основы эксплуатационной работы железных дорог, структура, организация управления. Основные эксплуатационные показатели работы железных дорог [1, гл. 1].

Раздел 2

Тяговые расчеты

- 2.1. Назначение тяговых расчетов. Силы, действующие на поезд. Уравнение движения поезда, аналитический и графический приближенные методы его решения. Графическое построение кривых скорости и времени хода поезда [1, гл. 2].
- 2.2. Расчет веса поезда и проверка его по условию трогания с места. Определение тормозного пути поезда [1, гл. 2, с. 24-25].
- 2.3. Алгоритмы моделирования движения поезда на ЭВМ [1, гл. 2, с.28].

Разлел 3

Эксплуатационные основы перегонных систем железнодорожной автоматики и телемеханики

- 3.1. Способы обеспечения безопасности движения поездов на перегонах. Разграничение движения поездов по времени и расстоянию. Исторический обзор развития перегонных СЖАТ. Требования ПТЭ к перегонным СЖАТ [1, гл. 3, с. 33].
- 3.2. Полуавтоматическая блокировка. Эксплуатационнотехнические требования. Определение минимальных интервалов между попутно следующими поездами и мест расположения блок-постов [1, гл. 3, с. 36].
- 3.3. Автоблокировка. Классификация систем автоблокировки. Эксплуатационно-технические требования. Системы сигнализации и интервалы между попутно следующими поездами. Значность систем сигнализации автоблокировки при сме-

шанном движении (в том числе при наличии высокоскоростных поездов). Способы расстановки светофоров. Корректировка мест расстановки светофоров автоблокировки. Путевой план перегона. Особенности расстановки светофоров при четырехзначной сигнализации. Расстановка сигналов в метрополитенах [1, гл. 3, с. 38-56].

3.4. Связь автоматической локомотивной сигнализации и систем автоблокировки. Контроль бдительности машиниста и авторегулировка скорости. Защитные участки. Система автоматического управления тормозами. Автоматическое ведение поездов [1, гл. 3, с. 56].

Раздел 4

Эксплуатационные основы станционных систем железнодорожной автоматики и телемеханики

- 4.1. Раздельные пункты. Классификация станций и виды выполняемых операций [1, гл. 4, с. 33].
- 4.2. Развитие станционных систем железнодорожной автоматики. Принцип действия маршрутно-контрольных устройств, механической и электромеханической централизации [1, гл. 4, с. 79].
- 4.3. Структурная схема электрической централизации. Требования ПТЭ к системам электрической централизации. Основные понятия и классификация систем. Управление движением поездов при электрической централизации [1, гл. 4, с. 89].
- 4.4. Понятие об однониточном (схематическом) плане станции. Элементы схематического плана и их условное изображение. Нумерация стрелок и путей на станции. Специализации путей на станции. Правила расстановки изолирующих стыков станционных рельсовых цепей. Сигнализация и расстановка входных и предупредительных светофоров. Сигнализация и расстановка выходных, маршрутных и повторительных светофоров. Расстановка маневровых светофоров. Взаимозависимость сигнальных показаний станционных светофоров. Определение ординат стрелок и светофоров [6].
- 4.5. Маршрутизация на станциях. Враждебность маршрутов. Взаимозависимость стрелок, сигналов и маршрутов. Таблицы

взаимозависимостей на станции. Охранные стрелки и негабаритные стрелочные секции [6].

- 4.6. Построение двухниточного плана станции. Принципы построения электрических схем ЭЦ [6].
- 4.7. Технология работы промежуточной, участковой и сортировочной станций. Распределение зон и функций управления между оперативным персоналом станций. Границы централизованных зон управления. Обоснование целесообразности местного управления стрелками. Определение численности оперативного персонала станций. Функциональная структура ЭЦ. Информационное обеспечение дежурных и автоматизация управления маршрутами при ЭЦ. Виды связи у дежурных по станции. Аппараты управления и контроля, органы управления и их назначение. Этапы строительства ЭЦ, составляющие затрат, конструкция постов ЭЦ. Требования, выполняемые при приемке всех видов устройств автоматики телемеханики и связи. Вспомогательные подсистемы и устройства ЭЦ (обдувка и электрообогрев стрелок, оповещение монтеров пути, устройства резервирования предохранителей и т. п.) [6].

Раздел 5

Эксплуатационные основы применения устройств заградительной сигнализации

- 5.1. Обеспечение безопасности движения на переездах. Классификация переездов и переездной сигнализации, особенности применения. Виды и управление ограждающими устройствами. Эксплуатацинно-технические требования. Расчет времени извещения и длины участков приближения. Особенности управления станционными светофорами при наличии переездов и пешеходных дорожек [1, гл. 5, с. 127].
 - 5.2. Тоннельная и мостовая сигнализации [1, гл. 5, с. 127].

Раздел 6

Эксплуатационные основы применения систем диспетчерской централизации. Центры диспетчерского управления

6.1. Диспетчерское управление перевозочным процессом на железнодорожном транспорте. Виды диспетчерского управле-

- ния. Резервное и местное управление. Объекты управления и контроля. Схема железнодорожного участка, находящегося на диспетчерском управлении. Требования ПТЭ к системам диспетчерской централизации [1, гл. 6, с. 135].
- 6.2. Эксплуатационно-технические требования к системам ДЦ. Особенности ДЦ для малодеятельных участков. Технологические схемы диспетчеризации полигона железной дороги [1, гл. 5, с. 138].
- 6.3. Загрузка оперативного персонала и задача определения границ зон диспетчерского управления. Автоматизация процессов управления в современных диспетчерских системах. Обоснование этапов автоматизации [1, гл. 5, с. 142].
- 6.4. Автоматизированные центры диспетчерского управления. Принципы организации информационно-вычислительных сетей диспетчерского управления. Оперативные подсистемы АСУЖТ и их взаимодействие с объектами управления. Автоматизированный диспетчерский центр (АДЦ) МПС. Технологические принципы работы диспетчерского персонала. Техническое и информационное обеспечение. АДЦ железной дороги. Структура системы. Технология работы оперативного персонала. Автоматизированное рабочее место диспетчера. Техническое и информационное обеспечение. Автоматизированный анализ выполнения графика движения поездов [8, 9].
- 6.5. Автоматизированные централизованные системы управления железнодорожными станциями и узлами. Структура и функциональный состав [8, 9].

Разлел 7

Эксплуатационные основы автоматизации и механизации на сортировочных станциях

7.1 Сортировочная работа на станциях. Типы горок, оснащение их устройствами автоматизации и механизации. Расчет параметров движения отцепов по горке. План и профиль горки. Перерабатывающая способность горки. Технологические приемы повышения перерабатывающей способности сортировочных горок. Основные составляющие комплексной автоматизации сортировки вагонов [1, гл. 7, с. 147].

Разлел 8

Технико-экономическая эффективность систем железнодорожной автоматики и телемеханики

8.1 Влияние СЖАТ на пропускную и перерабатывающую способность, а также участковую скорость. Методика расчета технико-экономической эффективности систем железнодорожной автоматики и телемеханики. Составляющие капитальных вложений и эксплуатационных расходов при расчете экономической эффективности. Учет экономических потерь при ненадежном функционировании устройств СЖАТ и нарушениях безопасности движения поездов. Сравнительная оценка и выбор СЖАТ [1, гл. 8, с. 166].

4.3. Практические занятия

№ п/п	№ раздела дисциплины	Наименование практических занятий
1	2	Определение тормозного пути поезда. Проверка по условию трогания поезда с места
2	3	Определение минимального интервала следования поездов и расстановка светофоров при трехзначной АБ

5. САМОСТОЯТЕЛЬНАЯ РАБОТА

а) Контрольная работа. Тема: «Расстановка проходных светофоров (АБ) на заданном перегоне ».

Задание на контрольную работу.

1. Произвести расстановку светофоров автоблокировки с трехзначной сигнализацией на заданном перегоне по расчетному межпоездному интервалу и проверить соблюдение эксплуатационных и технических требований, предъявляемых к автоблокировке. Расстановку выполнить по кривой скорости с нанесенными на нее минутными засечками времени хода расчетного грузового поезда.

- 2. Произвести проверку длин блок-участков на соответствие тормозным путям пассажирского (весом 10000 kH) и грузового ускоренного (весом 15000 kH).
- 3. Проверить потребность в установке условно-разрешающих сигналов на проходных светофорах, расположенных на затяжных подъемах по условию трогания поезда (расчетного веса) с места.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Перечень обязательной литературы

1. Кокурин И.М., Кондратенко Л.Ф. Эксплуатационные основы устройств железнодорожной автоматики и телемеханики. — М.: Транспорт, 1989.

6.2. Перечень рекомендованной литературы

- 2. Правила технической эксплуатации железных дорог Российской Федерации. М.: POO «Техинформ», 1999.
- 3. Инструкция по сигнализации на железных дорогах Российской Федерации. —М.: Транспорт, 1994.
- 4. Инструкция по движению поездов и маневровой работе на железных дорогах Российской Федерации. М.: РОО «Техинформ», 1999.
- 5. Инструкция по определению станционных и межпоездных интервалов / МПС СССР. —М.: Транспорт 1981.
- 6. Инструкция по проектированию станций и узлов на железных дорогах. —М.: Транспорт, 1978.
- 7. Правила тяговых расчетов для поездной работы. -M.: Транспорт, 1985.
- 8. Кочнев Ф.П., Сотников И.Б. Управление эксплуатационной работой железных дорог: Учебное пособие для вузов. —М.: Транспорт, 1990.
- 9. Железнодорожные станции и узлы / В.М. Акулиничев, Н.В. Правдин, В.Я. Болотный, Н.Е. Савченко; /Под ред. В.А. Акулиничева. —М.: Транспорт, 1992.

10. Станционные системы автоматики и телемеханики: Учебник для вузов ж.д. транспорта. / Вл. В. Сапожников, Б.Н. Елкин, И.М. Кокурин и др. /Под ред. В.В. Сапожникова. —М.: Транспорт, 1997.

6.3 Информационное обеспечение

Пакет прикладных программ для проведения тяговых расчетов